

SHREE DEVI INSTITUTE OF TECHNOLOGY

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE)

AIRPORT ROAD, KENJAR, MANGALORE - 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit_kenjar@rediffmail.com

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2019-23

Semester-III/IV

Subject: N	1ATHE	MAT	CS IV				Su	bject	Code	: 21M	AT31				
					(Cours	e Ou	tcome	es						
CO1	To so	olve or	dinary	differ	rential	equat	ions u	sing La	aplace	trans	form				
CO2	Dem	onstra	te the	Fouri	er seri	es to s	tudy t	he be	havior	of per	riodic	functio	ons an	d their	
	appli	catior	is in sy	stem	comm	unicat	ions, d	digital	signal	proce	ssing a	nd fie	ld the	ory	
CO3	To us	se Fou	rier tra	ansfor	ms to	analyz	e prol	olems	involv	ing co	ntinuo	us-tim	ne sign	als and	l to
	apply	y Z-Tra	ansform	n tech	inique	s to so	lve di	fferen	ce equ	ations	i				
CO4	To so	olve mathematical models represented by initial or boundary value problems ving partial differential equations													
	invol	lving partial differential equations ermine the extremals of functionals using calculus of variations and solve problems													
CO5	Dete	lving partial differential equations ermine the extremals of functionals using calculus of variations and solve problems on in dynamics of rigid bodies and vibrational analysis													
	arisir	ermine the extremals of functionals using calculus of variations and solve problems ing in dynamics of rigid bodies and vibrational analysis.													
					CC)-PO-	PSO	Mapp	oing						
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	2	2	-	-	-	-	-	-	1			
CO2	3	2	-	2	2	-	-	-	-	-	-	1			
CO3	3	2	-	2	2	-	-	-	-	-	-	1			
CO4	3	2	-	2	2	-	-	-	-	-	-	1			
CO5	3	2	-	2	2	-	-	-	-	-	-	1			
Average	3	2	-	2	2	-	-	-	-	-	-	1			

Subject: A	ircraft	Mate	erials	and P	roces	ses	Su	bject	Code	:21A	32				
(+MANUFA	CTURI	NG PR	OCESS	5 LAB)											
					(Cours	e Out	tcome	es						
CO1	Appl ^e mate	y the k erials.	nowle	edge a	bout t	he me	chanio	cal beh	navior	of diff	erent	aircraf	t&ae	rospac	e
CO2	Expla Com	xplain the Characteristics and applications of Aluminum alloys, Ceramics and Composites Materials. Ivaluate the importance of high temperature materials and their characterization													
CO3	Evalu	mposites Materials. aluate the importance of high temperature materials and their characterization													
CO4	Unde	erstan	d the H	leat T	reatm	ent pr	ocesse	es of ai	ircraft	metal	s and a	alloys			
					CC	D-PO-	PSO	Mapp	ing						
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1	2	-	-	-	-	-	-	2			
CO2	2	1	1	1	2	-	-	-	-	-	-	2			
CO3	2	1	1	1	2	-	-	-	-	-	-	2			

Hoper

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO4	2	1	1	1	2	-	-	-	-	-	-	2		
Average	2	1	1	1	2	-	-	-	-	-	-	2		

Subject: FI	LUID N	1ECHA	NICS				Su	bject	Code	: 21AE	33					
						Cours	e Out	tcome	es							
CO1	Evalu	uate th	ne effe	ct of f	luid pr	roperti	es.									
CO2	Appl	y the g	govern	ing lav	ws of f	luid flo	w									
CO3	Class	assify different types of fluid flows. CO-PO-PSO Mapping														
	CO-PO-PSO Mapping															
COs		CO-PO-PSO Mapping POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	-	1	1	-	-	-	-	-	2	1				
CO2	2	2	-	1	1	-	-	-	-	-	2	1				
CO3	2	2	-	1	1	-	-	-	-	-	2	1				
Average	2	2	-	1	1	-	-	-	-	-	2	1				

Subject: E	LEMEN	ITS OF	AERO	NAUT	ICS		Sul	bject	Code	: 21AE	34				
						Cours	e Out	tcome	es						
CO1	Appr	eciate	and a	pply t	he bas	sic prin	ciple o	of avia	tion.						
CO2	Appl [.] prop	y the o ulsion	concep and a	ots of f ircraft	undar mate	nents (rials du	of fligl uring t	nt, bas he dev	ics of a velopn	aircraf nent o	t struc f an ai	ctures, rcraft.	aircra	ft	
CO3	CO-PO-PSO Mapping														
	Comprehend the complexities involved during development of flight vehicles.														
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	1	-	-	I	-	-	-	2	1			
CO2	2	2	-	1	-	-	-	-	-	-	2	1			
CO3	2	2	-	1	-	-	-	-	-	-	2	1			
Average	2	2	-	1	-	-	-	-	-	-	2	1			

Subject: C	OMPU	TER AI	DED A	IRCRA	F T		Sul	bject	Code	: 21AE	L35				
DRAWING															
					(Cours	e Out	tcome	es						
CO1	Disti	nguish	drawi	ngs of	^f mach	ine an	d airc	raft co	mpon	ents					
CO2	Ident	Identify assembly drawings either manually or by using standard CAD packages Practice with standard components and their assembly of an aircraft.													
CO3	Pract	Practice with standard components and their assembly of an aircraft.													
					CC)-PO-	PSO	Mapp	ing						
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	3	3	-	-	-	-	-	-	2	3			
CO2	-	-	3	3	-	-	-	-	-	-	2	3			

40pm

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO3	-	-	3	3	-	-	-	-	-	_	2	3		
Average	-	-	3	З	-	-	-	-	-	-	2	3		

Subject: S	OCIAL	CONN	ECT &	RESPO	ONSIBI	LITIES	Su	bject	Code	: 21SC	R36				
					(Cours	e Out	tcome	es						
CO1	Unde	erstan	d socia	al resp	onsibi	lity									
CO2	Pract	tice su	staina	bility a	and cre	eativity	,								
CO3	Shov	vcase	planni	ng anc	l orgar	nizatio	nal ski	ills							
					CC	D-PO-I	PSO	Mapp	ing						
COs						PC)s							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	3	-	-	-	-	-			
CO2	-	-	-	-	-	-	3	-	-	-	-	-			
CO3	-	-	-	-	-	-	3	-	-	-	-	-			
Average	-	-	-	-	-	-	3	-	-	-	-	-			

Subject: Sa	amskr	uthika	a Kanı	nada			Su	bject	Code	: 21KS	K37/47	7			
						Cours	e Ou	tcome	es						
CO1	Kanr	nada l	angua	age, lit	teratu	ire and	d cult	ure w	ill be t	famili	arized				
CO2	Will	get in	teres	t on K	annad	da lite	rature	e pre-	mode	rn, m	odern	poet	ry and	l cultu	re
CO3	Fam	iliarizi	ing wi	th tec	hnica	l pers	ons								
CO4	Prac	ractice on kannada language, normal kannada and administrate kannada will be amiliarized													
	fami	amiliarized CO-PO-PSO Mapping													
	familiarized CO-PO-PSO Mapping														
COs						PC	Ds							PSOs	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	-	-	3	-	-			
CO2	-	-	-	-	-	-	-	-	-	3	-	-			
CO3	-	-	-	-	-	-	-	-	-	3	-	-			
CO4	-	-	-	-	-	-	-	-	-	3	-	-			
Average	-	-	-	-	-	-	-	-	-	3	-	-			

Subject: Co	onstitution of India and Professional	Subject Code: 21CIP37/47
Ethics (CIP)		
	Course	Outcomes
CO1	Analyze the basic structure of Indian	Constitution
CO2	Remember their Fundamental Rights	s, DPSP's and Fundamental Duties (FD's) of our
	constitution	
CO3	Know about our Union Government,	political structure & codes, procedures.
CO4	Understand our State Executive & El	ections system of India
CO5	Remember the Amendments and Em	nergency Provisions, other important provisions

40pm Principal SHREE DEVI INSTITUTE OF TECHNOLOGY

MANGALORE

	giver	ו by th	e con	stitutio	on										
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	2	-	-	-	-			
CO2	-	-	-	-	-	-	-	2	-	-	-	-			
CO3	-	-	-	-	-	-	-	2	-	-	-	-			
CO4	-	-	-	-	-	-	-	2	-	-	-	-			
CO5	-	-	-	-	-	-	-	2	-	-	-	-			
Average	-	-	-	-	-	-	-	2	-	-	-	-			

Subject: D	igitaliz	ation	in Aero	onauti	cs		Sul	bject	Code	: 21AE	383				
						Cours	e Out	tcome	es						
CO1	Appl	y digit	alizati	on in A	Aerona	nutics									
CO2	Imple	ement	digita	lizatio	n in co	ollabor	rative	desigr	ı, mair	ntenan	ce, rej	oair ar	nd over	rhaul.	
CO3	Enhance the productivity thru digitalization in Aeronautics. CO-PO-PSO Mapping														
	CO-PO-PSO Mapping														
COs	CO-PO-PSO Mapping POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	3	-	-	-	-	-	-	3			
CO2	-	-	-	-	3	-	-	-	-	-	-	3			
CO3	-	-	-	-	3	-	-	-	-	-	-	3			
Average	-	-	-	-	3	-	-	-	-	-	-	3			

Subject: C	omple	ex ana	lysis,	proba	bility	and	Su	bject	Code	: 21MA	T41				
linear prog	gramn	ning													
						Cours	e Ou	tcome	es						
CO1	Use	the co	oncep	t of aı	n anal	ytical	funct	ion ar	nd cor	nplex	poter	ntials	to solv	e the	
	prob	lems	arisin	g in fl	uid flo	ow.									
CO2	Utili	ze cor	nform	al trar	nsforr	natior	n and	comp	lex in	tegral	arisin	g aer	o foil t	heory	,
	fluid	fluid flow visualization and image processing.													
CO3	App	Apply discrete and continuous probability distributions in analyzing the													
	prob	abilit	y moc	lels ar	ising	in the	engir	neerin	g field	d.					
CO4	Anal	yze a	nd sol	ve lin	ear pr	ograr	nming	g mod	els of	real-l	ife sit	uatior	ns and	solve	LPP
	by th	ne sim	nple m	netho	b										
CO5	Lear	n tecł	nnique	es to s	olve	Transp	oortat	ion a	nd ass	ignm	ent pr	oblen	ıs.		
					CO	D-PO-	PSO	Mapp	ing						
COs						P	Ds							PSOs	
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3													3	
CO1	3	2	-	2	2	-	-	-	-	-	-	1			

40pm

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO2	3	2	-	2	2	-	-	-	-	-	-	1		
CO3	3	2	-	2	2	-	-	-	-	-	-	1		
CO4	3	2	-	2	2	-	-	-	-	-	-	1		
CO5	3	2	-	2	2	-	-	-	-	-	-	1		
Average	3	2	-	2	2	-	-	-	-	-	-	1		

Subject: A	ERODY	'NAMI	CS				Su	bject	Code	: 21AE	42					
					(Cours	e Out	tcome	es							
CO1	Evalu	uate ty	pical a	airfoil	charac	teristi	cs and	l two-o	dimen	sional	flows	over a	irfoil			
CO2	Com	pute a	nd ana	alyze t	he inc	ompre	essible	flow o	over fi	nite w	ings					
CO3	Appl	Apply finite wing theory and design high lift systems from the aerodynamics view point														
		CO-PO-PSO Mapping														
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	-	1	1	-	-	-	-	-	2	1				
CO2	2	2	-	1	1	-	-	-	-	-	2	1				
CO3	2	2 2 - 1 1 2 1														
Average	2	2	-	1	1	-	-	-	-	-	2	1				

Subject: A	ERO EI (NAM)	NGINE DCS	ERING				Su	bject	Code	: 21AE	43				
						Cours	e Ou	tcome	es						
CO1	Appl	y the o	concep	ots and	d defin	itions	of the	rmody	namio	cs.					
CO2	Diffe theri	rentia modyr	te the namics	rmody to dif	vnamio ferent	work proce	and h ss.	eat an	id appl	y I law	/ and I	I law c	of		
CO3	Appl	Apply the principles of various gas cycles.													
		CO-PO-PSO Mapping													
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	1	-	-	-	-	1	2	2			
CO2	3 3 2 - 1 1 2 2											2			
CO3	3	3	2	-	1	-	-	-	-	1	2	2			
Average	3	3	2	-	1	-	-	-	-	1	2	2			

Subject: N	IECHANICS OF MATERIALS	Subject Code: 21AE44	
	Course	Outcomes	
CO1	Apply the basic concepts of strength	of materials.	
CO2	Compute stress, strain under differe	nt loadings	
CO3	Distinguish the different failure theo	ries	
	CO-PO-F	PSO Mapping	
COs	PO	S	PSOs

40pm ____ Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	1	-	-	-	-	-	-	3	2			
CO2	3	2	-	1	-	-	-	-	-	-	3	2			
CO3	3	2	-	1	-	-	-	-	-	-	3	2			
Average	3	2	-	1	-	-	-	-	-	-	3	2			

Subject: B	IOLOG	Y FOR	ENGI	NEERS			Su	bject	Code	: 21BE	45				
					(Cours	e Out	tcome	es						
CO1	Eluci studi	date t es.	he bas	ic biol	ogical	conce	pts via	a relev	ant in	dustria	al appl	icatior	ns and	case	
CO2	Evalı proje	uate th ects	ne prin	ciples	of des	sign an	d dev	elopm	ent, fo	or expl	oring	novel l	bioeng	ineerir	וg
CO3	Corro	Corroborate the concepts of biomimetics for specific requirements.													
CO4	Thinl prob	Think critically towards exploring innovative bio-based solutions for socially relevant problems.													
		CO-PO-PSO Mapping													
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	1			
CO2	2	-	-	-	-	-	-	-	-	-	-	1			
CO3	2	2 1													
CO4	2	-	_	-	-	-	-	-	-	-	-	1			
Average	2	-	-	-	-	-	-	-	-	-	-	1			

Subject: H	YDRAL	JLICS A	AND PI	NEUM	ATICS		Subject Code: 21AEL46									
SYSTEM LA	В															
					(Cours	e Out	tcome	es							
CO1	Oper	ate th	e hydr	aulic a	and pn	euma	tic cor	npone	nts.							
CO2	Appl	y the s	uitabl	e cylin	ders a	ccordi	ing to	the ap	plicati	ons						
CO3	Appr	Appreciate the purpose of valves.														
		CO-PO-PSO Mapping														
COs		POs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1	1	2	-	-	-	-	-	-	3	2				
CO2	3 1 1 2 3 2											2				
CO3	3	1	1	2	-	-	-	-	-	-	3	2				
Average	3	1	1	2	-	-	-	-	-	-	3	2				

Subject: UNIVERSAL HUMAN VALUES-II:	Subject Code: 21UHV49										
UNDERSTANDING HARMONY and ETHICAL											
HUMAN CONDUCT											
Course Outcomes											

40pm Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO1	Holistic vision of life, Socially responsible behavior.															
CO2	Envir	onme	ntally	respoi	nsible	work,	Ethica	l hum	an cor	nduct.						
CO3	Haviı	ng Cor	npete	nce an	d Cap	abilitie	es for I	Mainta	aining	Health	and H	lygien	e.			
CO4	Appr	eciatio	on and	l aspira	ation f	or exc	ellenc	e (mei	rit) and	d grati	tude f	or all.				
		CO-PO-PSO Mapping														
COs		POs PSOs														
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	-	-	-	-	-	-	-	3	-	-	-	-				
CO2	-	-	-	-	-	-	-	3	-	-	-	-				
CO3	-	-	-	-	-	-	-	3	-	-	-	-				
CO4	-	3														
Average	-	-	-	-	-	-	-	3	-	-	-	-				

Hopes

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE