

SHREE DEVI INSTITUTE OF TECHNOLOGY

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGG <u>2021 Scheme</u>

Course N	Name	Transform Calculus, Fourier Series and Numerical Techniques
Course (Code	21MAT 31
Course (Dutcomes	s (COs): At the end of the course the student will be able to:
C201.1	To solve	e ordinary differential equations using Laplace transform.
C201.2	Demons	trate the Fourier series to study the behavior of periodic functions and their
	applicat	ions in system communications, digital signal processing and field theory.
C201.3	To use H	Fourier transforms to analyze problems involving continuous-time signals
	and to a	pply Z Transform techniques to solve difference equations
C201.4	To solve	e mathematical models represented by initial or boundary value problems
	involvin	g partial differential equations
C201.5	Determi	ne the extremes of functional using calculus of variations and solve
	problem	s arising in dynamics of rigid bodies and vibrational analysis.

					(CO-PO	Mappi	ng				
COs						Р	'Os					
	1	2	3	4	5	6	7	8	9	10	11	12
C201.1	3	2										
C201.2	3	2										
C201.3	3	2										
C201.4	3	2										
C201.5	3	2										
Max	3	2										

Course I	Name	Digital System Design using Verilog
Course (Code	21EC32
Course (Outcome	s (Cos): At the end of the course the student will be able to:
C202.1	Simplify	Boolean functions using K-map and Quine-McCluskey minimization
	techniqu	le.
C202.2	Analyze	and design for combinational logic circuits.
C202.3	Analyze	the concepts of Flip Flops (SR, D, T and JK) and to design the synchronous
	sequenti	al circuits using Flip Flops.
C202.4	Analyse	the structure of verilog module and understand verilog data flow
	descript	ion.
C202.5	Model C	Combinational circuits (adders, subtractors, multiplexers) and sequential
	circuits	using Verilog descriptions.

					(CO-PO	Mappi	ing				
COs						Р	Os					
	1	2	3	4	5	6	7	8	9	10	11	12
C202.1	2	2	2		2							
C202.2	2	2	2		2							
C202.3	2	2	2		2							
C202.4	2	2	2		2							
C202.5	2	2	2		2							
Max	2	2	2		2							

Hoper

Course I	Name	Basic Signal Processing
Course (Code	21EC33
Course (Outcome	s (COs): At the end of the course the student will be able to:
C203.1	Analyze	and model typical signal sets in terms of a basis function set of amplitude,
	phase ar	nd frequency.
C203.2	Demons	trate by way of simulation or emulation the ease of analysis employing basis
	function	, statistical representation and Eigen Values
C203.3	Analyze	the different types of signals and systems. Determine the linearity,
	causality	y, time- invariance and stability properties of discrete time systems.
C203.4	Evaluate	e the convolution sum and integral.
C203.5	Analyze	discrete time signals and systems using Z transforms.

					(CO-PO	Mappi	ing				
COs						I	POs					
	1	2	3	4	5	6	7	8	9	10	11	12
C203.1	2	2	2									
C203.2	2	2	2									
C203.3	2	2	2									
C203.4	2	2	2									
C203.5	2	2	2									
Max	2	2	2									

Course I	Name	Analog Electronic Circuits
Course	Code	21EC34
Course	Outcome	s (COs): At the end of the course the student will be able to:
C204.1	Underst	and the characteristics of BJTs and FETs.
C204.2	Design a	and analyze BJT and FET amplifier circuits.
C204.3	Design s	sinusoidal and non-sinusoidal oscillators.
C204.4	Underst	and the functioning of linear ICs.
C204.5	Design	of linear IC based circuits, thyristors and gate trigger circuits.

					(CO-PO	Mappi	ng					
COs						Р	Os						
	1	2	3	4	5	6	7	8	9	10	11	12	
C204.1	2	2	2							Re	spark	$ \land$	
C204.2	2	2	2							D	incinal		
C204.3	2	2	2							FI	multipar	Trou	NOLOCY
C204.4	2	2	2					211	ICE DE	VIIIUSI	TUTEUF	ECH	NULUUT
C204.5	2	2	2							MA	NGALUKE		
Max	2	2	2										

Course N	Name	Analog and Digital Electronics Lab
Course (Code	21ECL35
Course (Outcomes	s (COs): At the end of the course the student will be able to:
C205.1	Underst	and the electronic circuit schematic and its working.
C205.2	Realize	and test amplifier and oscillator circuits for the given specifications.
C205.3	Realize	the opamp circuits for the applications such as DAC, implement
	mathem	atical functions and precision rectifiers.
C205.4	Study th	e static characteristics of SCR and test the RC triggering circuits.
C205.5	Design a	and test the combinational and sequential circuits for their functionalities.

					(C O-PO	Mappi	ng				
COs						P	Os					
	1	2	3	4	5	6	7	8	9	10	11	12
C205.1	2	2	3	3								
C205.2	2	2	3	3								
C205.3	2	2	3	3								
C205.4	2	2	3	3								
C205.5	2	2	3	3								
Max	2	2	3	3								

Course I	Name	LD (Logic Design) Lab using Pspics/ MultiSIM
Course (Code	21EC381
Course (Outcomes	s (COs): At the end of the course the student will be able to:
C206.1	Design,	realize and verify DeMorgans Theorem, SOP, POS forms.
C206.2	Demons	trate the truth table of various expression and combinational circuits using
	logic ga	tes.
C206.3	Design	various combinational circuits such as adders, subtractors, comparators,
	multiple	exers.
C206.4	Analyse	and design any given sequential logic circuits

					(CO-PO	Mappi	ng						
COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12		
C206.1	3	3												
C206.2	3	3												
C206.3	3	3								11-				
C206.4	3	3							<	Te	shark	>		
Max	3	3								Pr	incinal			

Course Title : Kannada KaliCourse Code/Index : 21KBK37 Course Index :

C209B

COURSE OUTCOMES (CO): On completion of this course, students are able to:

СО	Course Outcomes
C209.1	Read and understand the simple words in Kannada language
C209.2	Learn Vyavaharika Kannada (Kannada for Communication)
C209.3	Gain some interest on Kannada Language and Literature

						CO-	PO Maj	pping				
COs	POs											
	1	2	3	4	5	6	7	8	9	10	11	12
C209.1										3		
C209.2										3		
C200.2										3		
0209.3												
Max										3		

Course I	Name	Maths for Communication Engineers						
Course (Code	21EC41						
Course (Outcome	s (COs): At the end of the course the student will be able to:						
C207.1	Use the	concepts of analytic function and complex potentials to solve the problem						
	arising in electromagnetic field theory.							
C207.2	Utilize conformal transformation and complex integral arising in steady magnetic							
	field, ele	ectric potential.						
C207.3	Apply n	naxwell's equation in analyzing time varying field.						
C207.4	To prov	ide a foundation in Random variables which find application in						
	Commu	nication.						
C207.5	To prov	ide a foundation in Random Processes and correlation functions which find						
	applicat	ion in Communication						

					(CO-PO	Mappi	ng					
COs	POs												
	1	2	3	4	5	6	7	8	9	10	11	12	
C207.1	3	3											
C207.2	3	3											
C207.3	3	3											
C207.4	3	3											
C207.5	3	3											
Max	3	3											

40pm

Course N	ame	Digital Signal Processing						
Course C	ode	21EC42						
Course O	utcomes	(COs): At the end of the course the student will be able to:						
C208 1	Compu	te Discrete Fourier Transform (DFT)/Inverse DFT of discrete sequence						
C206.1	using t	hedefinition and properties of DFT along with its real and complex discrete						
	time si	gnals.						
C208.2	Evalua	te the DFT using linear filtering approach and develop Fast Fourier						
C208.2	Transfe	orm(FFT) algorithms to reduce the computation time of DFT.						
	Design	Finite Impulse Response (FIR) filters using Rectangular, Hamming,						
C208.3	Hannir	ng and						
	Bartlet	t windows and realize FIR filters using Direct form, Linear phase,						
	Freque	ncysampling and Lattice structures.						
C208 4	Design	and analyze analog/digital Infinite Impulse Response (IIR) filters						
C208.4	usingB	utterworth and to realize IIR filters using Direct form I, II structures.						
	Unders	tand basics of digital signal processors such as processor architectures and						
C208.5	hardwa	re units, investigates fixed-point and floating-point formats and illustrates						
	the imp	plementation of digital filters.						

					(CO-PO	Mappi	ing						
COs	POs													
	1	2	3	4	5	6	7	8	9	10	11	12		
C208.1	2	1	1											
C208.2	2	1	1											
	2	1	1											
C208.3														
C208.4	2	1	1											
	2	1	1											
C208.5														
Max	2	1	1											

Hoper

Course I	Name	Circuits and Controls						
Course (Code	21EC43						
Course (Outcome	s (COs): At the end of the course the student will be able to:						
C209.1	Solve e	lectrical circuit by applying Superposition/ Reciprocity/ Thevenin 's/						
	s/ Maximum Power Transfer/ Millman 's theorems.							
C209.2	Determine the Impedance (Z), Admittance(Y), Transmission (T) and Hybrid (h)							
	paramet	ers, their inter relationships for a two-port network.						
C209.3	Define a	and explain different types of control system and its application. Formulate						
	the math	nematical model of a system using block diagram reduction techniques and						
	signal fl	ow graph method.						
C209.4	Determine the time domain specifications for first order and second order systems.							
C209.5	.5 Determine the stability of a system in the frequency domain using Nyquist and bod							
	plots.							

					(CO-PO	Mappi	ng							
COs		POs													
	1	2	3	4	5	6	7	8	9	10	11	12			
C209.1	1	2	1												
C209.2	1	2	1												
C209.3	1	2	1												
C209.4	1	2	1												
C209.5	1	2	1												
Max	1	2	1												

Hoper

Course I	Name	Communication Theory						
Course (Code	21EC44						
Course (Outcome	s (COs): At the end of the course the student will be able to:						
C210.1	Underst	and and analyze the concepts of analog modulation schemes such as :						
	DSBSC	, SSB and VSB.						
C210.2	0.2 Understand and analyze the concepts of AM, FM, PLL and Superheterodyne							
	receiver							
C210.3	Evolve	the concept of SNR in the presence of channel induced noise and study						
	Demodu	ilation of analog modulated signals.						
C210.4	Evolve	the concept of quantization noise for sampled and encoded signals and study						
	the conc	cepts of reconstruction from these samples at a receiver.						
C210.5	Underst	and and analyse concepts digitization of signals; sampling, quantizing and						
	encodin	g.						

					(CO-PO	Mappi	ng					
COs	POs												
	1	2	3	4	5	6	7	8	9	10	11	12	
C210.1	2	2											
C210.2	2	2											
C210.3	2	2											
C210.4	2	2											
C210.5	2	2											
Max	2	2											

Hoper

Course I	Name	Communication Lab I							
Course (Code	21ECL46							
Course (Outcome	s (COs): At the end of the course the student will be able to:							
C211.1	Model a	n analog communication system signal transmission and reception.							
C211.2	Realize	e electronic circuits to perform analog and pulse modulations and							
	demodu	lations.							
C211.3	Verify t	he sampling theorem and relate the signal and its spectrum before and after							
	samplin	g.							
C211.4	Underst	and the process of PCM and Delta modulations.							
C211.5	Underst	and the PLL operation.							

					(CO-PO	Mappi	ing					
COs	POs												
	1	2	3	4	5	6	7	8	9	10	11	12	
C211.1	2	2	2						2				
C211.2	2	2	2						2				
C211.3	2	2	2						2				
C211.4	2	2	2						2				
C211.5	2	2	2						2				
Max	2	2	2						2				

Course Name		C++ Basics						
Course Code		21EC482						
Course Outcomes (COs): At the end of the course the student will be able to:								
C212.1	Understand object-oriented programming concepts, and apply them in solving							
	problems.							
C212.2	To create, debug and run simple C++ programs.							
C212.3	Introduc	the concepts of functions, friend functions, inheritance, polymorphism and						
	function	overloading.						
C212.4	Introduc	the concepts of exception handling and multithreading.						

					(CO-PO	Mappi	ng	~	to	Sho sh	>	
COs					POs				Principal				
	1	2	3	4	5	6	7	8 H	REEDE	VI INOST	TUTHOF	ELCH	NOLOGY
C212.1	3	2								MA	NGALOBE		
C212.2	3	2											
C212.3	3	2											

C212.4	3	2					
Max	3	2					

Hoper