

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail : sdit kenjar@rediffmail.com

Department of Mechanical Engineering Course Outcomes and CO-PO-PSO articulation Matrix Batch: 2019-23

						Sem	ester-	·III								
Subject: E	Inginee	ering M	athema	atics – I	II					5	Subje	ct Cod	le: 18M	1AT31		
						Cours	se Out	tcome	s							
CO1	equa	•	arising				•					i differ ields c		integra	al	
CO2	appl	icatior	ns in s	ystem	comm	nunica	tions,	digita	l signa	i I proc	essing		ield the	eory.		
CO3		Solve first and second order ordinary differential equations arising in engineering														
CO4	prob	unction arising in wave and heat propagation, signals and systems. Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods. Determine the externals of functionals using calculus of variations and solve														
CO5	Dete prob	ermine olems a	e the e arising	xterna i in dy	ls of fu namic	unction s of rig	nals u gid bo	sing c dies a	alculu: nd vib	s of va rationa	ariatior al anal	ns and lysis.	solve			
					C	J-PO -	PSO	Mapp	ing							
COs				-		P	Os				-			PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	-	-	-	-	-	-	2				
CO2	3	3	-	3	3	-	-	-	-	-	-	2				
CO3	3	3	-	3	3	-	-	-	-	-	-	2				
CO4	3	3	-	3	3	-	-	-	-	-	-	2				
CO5	3	3	-	3	3	-	-	-	-	-	-	2				
Average	3	3	-	3	3	-	-	-	-	-	-	2				

Subject:	Materia	als Sci	ence				Sul	bject	Code	: 18ME	32				
						Cours	e Out	tcome	S						
CO1				or unde anical		-	ne stru	cture a	and va	rious n	nodes	of failu	ure in I	nateria	ls
CO2	-		-	ed to e cs ,sma	-			-	-	ies of n	netals	and th	eir allo	oys,	
CO3	The r	e means of modifying such properties, as well as the processing and failure of materials.													
CO4	Conc	oncepts of use of materials for various applications are highlighted. CO-PO-PSO Mapping													
					CO	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	2	-	3	-	2	2			
CO2	3	3	-	3	3	-	2	-	3	-	2	2			
CO3	3	3	-	3	3	-	2	-	3	-	2	2			
CO4	3	3	-	3	3	-	2	-	3	-	2	2			
Average	3	3	-	3	3	-	2	-	3	-	2	2			

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY

MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Subject:	Basic ⁻	Thermo	odynan	nics			Su	bject	Code	: 18ME	33					
						Cours	se Out	tcome	S							
CO1	Learr	n abou	t therr	nodyn	amic s	ystem	s and l	bound	aries.							
CO2		•				•	mics in Zeroth		g, con	servati	on of	mass, o	conser	vation	of	
CO3	Unde	erstand	d vario	us forı	ms of e	energy	includ	ling he	at trar	nsfer a	nd wo	rk.				
CO4	Ident	tify vai	rious ty	ypes o	f prope	erties ((e.g., e	xtensi	ve and	inten	sive pr	operti	es)			
CO5	Use t	ables,	equat	ions, a	nd cha	arts, in	evalu	ation o	of ther	modyr	amic	proper	ties			
CO6		Apply conservation of mass, first law, and second law in thermodynamic analysis of systems (e.g., turbines, pumps, compressors, heat exchangers, etc.) Enhance their problem-solving skills in thermal engineering														
C07	Enha															
					CO	D-PO-	-PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	-	-	-	2				
CO2	3	3	3	3	3	-	-	-	-	-	-	2				
CO3	3	3	3	3	3	-	-	-	-	-	-	2				
CO4	3	3	3	3	3	-	-	-	-	-	-	2				
CO5	3	3	3	3	3	-	-	-	-	-	-	2				
CO6	3	3	3	3	3	-	-	-	-	-	-	2				
CO7	3	3	3	3	3	-	-	-	-	-	-	2				
Average	3	3	3	3	3	-	-	-	-	-	-	2				

Subject:	MEC	HAN	CS C)F			Su	bject	Code	: 18M	E34				
MATERIA	ALS							•							
						Cours	se Out	tcome	S						
CO1	Class	ify the	stress	ses into	o vario	us cat	egorie	s and o	define	elastic	prope	erties o	of mate	erials a	nd
				nd stra peratu			s caus	ed by a	applied	loads	in sin	nple an	d com	pound	
CO2	Deriv	e the	equati	ons fo	r princ	ipal st	ress ar	nd max	kimum	in-pla	ne she	ear stre	ess and	l calcul	ate
		their magnitude and direction. Draw Mohr circle for plane stress system and interpret this circle. Comprehend the complexities involved during development of flight vehicles.													
CO3	Corr	Comprehend the complexities involved during development of flight vehicles.													
CO4					-	-					force a	and be	nding	momer	nt
	-	-				of bea									
CO5	-								-	to tor	que, c	alculat	e twis	t and st	ress
	indu	ced in a	shafts	subjec	ted to	bendi	ng and	d torsic	on.						
CO6	Unde	erstand	d the c	oncept	t of sta	ability	and de	erive cr	ipplin	g loads	s for co	olumns	•		
C07	Unde	erstand	d the c	oncep	t of str	ain en	ergy a	nd con	npute	strain	energy	for ap	plied	loads.	
					C	O-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	2			

Hopez Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail : sdit kenjar@rediffmail.com

CO2	3	3	3	3	3	-	-	-	-	-	-	2		
CO3	3	3	3	3	3	-	-	-	-	-	-	2		
CO4	3	3	3	3	3	-	-	-	-	-	-	2		
CO5	3	3	3	3	3	-	-	-	-	-	-	2		
CO6	3	3	3	3	3	-	-	-	-	-	-	2		
C07	3	3	3	3	3	-	-	-	-	-	-	2		
Average	3	3	3	3	3	-	-	-	-	-	-	2		

Subject: WELDING		AL C	ASTI	NG A	ND		Su	bject	Code	:18M	E35A				
						Cours	e Out	tcome	s						
CO1	То рі	rovide	detail	ed info	ormatio	on abo	ut the	mould	ding pr	ocesse	es.				
CO2	То рі	rovide	knowl	edge o	of vario	ous cas	ting p	rocess	in ma	nufact	uring.				
CO3	To in	npart k	nowle	edge of	f vario	us join	ing pro	ocess ι	used in	manu	facturi	ing.			
CO4	-	o impart knowledge of various joining process used in manufacturing. o provide adequate knowledge of quality test methods conducted on welded and casted omponents. CO-PO-PSO Mapping													
					CO	D-PO-	PSO	Mapp	ing						
COs						PC	Ds							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	3	-	-	-	-	-		1			
CO2	3	3	2	3	3	-	-	-	-	-		1			
CO3	3	3	2	3	3	-	-	-	-	-		1			
CO4	3	3	2	3	3	-	-	-	-	-		1			
Average	3	3	2	3	3	-	-	-	-	-		1			

Subject: DRAWIN		PUT	ER A	IDE) MA	CHIN	IE		S	ubjec	t Cod	le: 181	VE36	A		
						Cours	se Out	tcome	s							
CO1	To ac	quire	the kn	owled	ge of C	AD so	ftware	e and it	ts feat	ures.						
CO2							eory o nal viev		ection	and m	ake dr	awings	using			
CO3	To fa	o familiarize the students with Indian Standards on drawing practices. o impart knowledge of thread forms, fasteners, keys, joints and couplings.														
CO4	To in	o impart knowledge of thread forms, fasteners, keys, joints and couplings.														
CO5		impart knowledge of thread forms, fasteners, keys, joints and couplings. make the students understand and interpret drawings of machine components so as to epare assembly drawings either manually and using CAD packages.														
CO6	To ac	quire	the kn	owled	ge of li	mits, 1	tolerar	nces ar	nd fits	pertai	ning to	machi	ine dra	wings.		
					CC	D-PO-	PSO	Mappi	ing							
COs						P	Os							PSOs	;	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	2	-	-	-	-	-	2					
CO2	3	3	3	3	2	-	-	-	-	-	2					
CO3	3	3	3	3	2	-	-	-	-	-	2					
CO4	3	3	3	3	2	-	-	-	-	-	2					

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Hoper

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO5	3	3	3	3	2	-	-	-	-	-	2		
CO6	3	3	3	3	2	-	-	-	-	-	2		
Average	3	3	3	3	2	-	-	-	-	-	2		

Subject:	MAT	ERIA	LS T	ESTI	NG L	AB	Su	bject	Code	: 18M	EL37/	٩				
						Cours	se Out	tcome	S							
CO1				•	•	•		sampl and gr	•		n chara	acteriza	ation s	such as		
CO2	To understand mechanical behaviour of various engineering materials by conducting standard tests. To learn material failure modes and the different loads causing failure.															
CO3	To le															
CO4	To learn material failure modes and the different loads causing failure. To learn the concepts of improving the mechanical properties of materials by different methods like heat treatment, surface treatment etc. CO-PO-PSO Mapping															
					CC	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	-	-						
CO2	3	3	3	3	3	-	-	-	-	-						
CO3	3	3	3	3	3	-	-	-	-	-						
CO4	3	3	3	3	3	-	-	-	-	-						
Average	3	3	3	3	3	-	-	-	-	-						

Subject:	KINE	MATI	CS O	F MA		IES	Sul	bject	Code	: 18M	E42				
						Cours	se Out	tcome	S						
CO1	Fami	liarize	with n	nechai	nisms a	and me	otion a	nalysi	s of m	echani	sms.				
CO2	Unde	erstand	d meth	ods of	mech	anism	motio	n anal	ysis an	d thei	r chara	octerist	ics.		
CO3	Analyse motion of planar mechanisms, gears, gear trains and cams.														
CO-PO-PSO Mapping															
COs						PO	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	3	3	3	-	-	-	1			
CO2	-	-	-	-	-	3	3	3	-	-	-	1			
CO3	-	-	-	-	-	3	3	3	-	-	-	1			
Average	-	-	-	-	-	3	3	3	-	-	-	1			

-7

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

Semester-IV

Subject: PROBABI METHODS	LITY AN						Sub	ject (Code	: 18M	IAT41					
					(Cour	se Oı	ıtcon	nes							
CO1	Use th proble										otenti	als to	solve	e the		
CO2	Utilize fluid fl									ntegra	l aris	ing in	aero	foil th	neory	,
CO3		oply discrete and continuous probability distributions in analyzing the probability odels arising in engineering field. ake use of the correlation and regression analysis to fit a suitable mathematical														
CO4		ake use of the correlation and regression analysis to fit a suitable mathematical odel for the statistical data.														
CO5		nodel for the statistical data. Construct joint probability distributions and demonstrate the validity of testing the ypothesis.														
					C	D-PO	-PSC) Map	ping							
COs						I	POs							F	PSO	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	-	-	-	-	-	-					
CO2	3	3	-	3	3	-	-	-	-	-	-					
CO3	3	3	-	3	3	-	-	-	-	-	-					
CO4	3	3	-	3	3	-	-	-	-	-	-					
CO5	3	3	I	3	3	-	-	-	-	-	I					
Average	3	3	-	3	3	-	-	-	-	-	-					

Subject:	Applie	d Theri	nodyna	amics			Sul	bject	Code	: 18M	E42					
					(Cours	se Out	tcome	s							
CO1	To ha	ave a w	vorking	g know	/ledge	of bas	ic perf	formai	nce of	Gas po	wer cy	cles.				
CO2	To de	etermi	ne per	forma	nce pa	ramet	ers of	refrige	ration	and ai	ir-conc	litionir	ng syst	ems.		
CO3			he pe of rece				neters	s of re	ecipro	cating	g air c	ompre	essor	as a		
CO4		To Calculate the forces exerted by a fluid at rest on submerged surfaces and understand the force of buoyancy To understand and evaluate the performance of steam power cycles their various														
CO5		force of buoyancy To understand and evaluate the performance of steam power cycles their various Engineering applications To know how fuel burns and their thermodynamic properties.														
CO6	To k	now ł	າow fເ	iel bu	rns a	nd the	eir the	rmod	ynam	ic pro	pertie	es.				
C07			stand C En			n of p	ower	trans	fer thi	ough	belt,	rope,	chain	and g	ear	
					C	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-		-	3					
CO2	3	3	3	3	3	-	-	-		-	3					
CO3	3	3	3	3	3	-	-	-		-	3					

Hope -7 Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO4	3	3	3	3	3	-	-	-	-	3		
CO5	3	3	3	3	3	-	-	-	-	3		
CO6	3	3	3	3	3	-	-	-	-	3		
C07	3	3	3	3	3	-	-	-	-	3		
Average	3	3	3	3	3	-	-	-	-	3		

Subject:	Fluid	Mecha	anics				Sul	bject	Code	: 18M	E44					
					(Cours	se Out	tcome	S							
CO1																
				-	-	of the	basic	prope	rties o	f fluids	and u	nderst	and th	e		
				ximati												
CO2						erted Joyan		luid a	t rest	on si	Ipmei	rged s	urfac	es and		
CO3	To u	nders	stand	the flo	ow ch			and	dynar	nics c	of flow	/ field	for va	arious		
CO4	To k force	Engineering applications To know how velocity changes and energy transfers in fluid flows are related to forces and torques and to understand why designing for minimum loss of energy in fluid flows is so important. To discuss the main properties of laminar and turbulent pipe flow and appreciate their														
CO5		To discuss the main properties of laminar and turbulent pipe flow and appreciate their differences and the concept of boundary layer theory.														
CO6	mode	Understand the concept of dynamic similarity and how to apply it to experimental modeling														
C07	modeling To appreciate the consequences of compressibility in gas flow and understand the effects of friction and heat transfer on compressible flows															
					C	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	2	-	3	-						
CO2	3	З	3	З	3	-	2	-	3	-						
CO3	3	3	3	3	3	-	2	-	3	-						
CO4	3	3	3	3	3	-	2	-	3	-						
CO5	3	3	3	3	3	-	2	-	3	-						
CO6	3	3	3	3	3	-	2	-	3	-						
C07	3	3	3	3	3	-	2	-	3	-						
Average	3	3	3	3	3	-	2	-	3	-						

Subject:	Mechanical Measurements and	Subject Code: 18MEL47B
Metrology L	ab	·
	Course	Outcomes
CO1	To illustrate the theoretical concepts	taught in Mechanical Measurements & Metrology
	through experiments.	
CO2	To illustrate the use of various measu	ring tools measuring techniques.
CO3	To understand calibration techniques	of various measuring devices.

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

					CO	D-PO-	PSO	Mapp	ing							
COs					PSOs											
	1	1 2 3 4 5 6 7 8 9 10 11 12														
CO1	2															
CO2	2	3	2	2	3	-	-	-		-		1				
CO3	2	3	2	2	3	-	-	-		-		1				
Average	2	3	2	2	3	-	-	-		-		1				

Subject:	MEAS	SURE	MEN	TS AN	ID ME	TRO	LOGY	' LAB	S	ubjec	t Cod	le: 181	MEL4	8B		
						Cours	se Out	tcome	S							
CO1		To illustrate the theoretical concepts taught in Mechanical Measurements & Metrology through experiments. To illustrate the use of various measuring tools measuring techniques.														
CO2	To il	To illustrate the use of various measuring tools measuring techniques.														
CO3	To u	To understand calibration techniques of various measuring devices.														
	CO-PO-PSO Mapping															
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	2	2	3	-	-	-		-	3					
CO2	2	2	2	2	3	-	-	-		-	3					
CO3	2	2	2	2	3	-	-	-		-	3					
Average	2	2	2	2	3	-	-	-		-	3					

Subject:	Machir	ne Too	ls and	Operat	tions				S	ubjec	t Cod	le: 18	ME45	В		
						Cours	se Out	tcome	es							
CO1				lents to and siz		rent m	achine	e tools	in ord	er to p	roduc	e com	onent	s havir	ıg	
CO2		To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools.														
CO3		To develop the knowledge on mechanics of machining process and effect of various parameters on economics of machining.														
					CO	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs	;	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	2	-	2	2				
CO2	3	3	3	3	3	-	-	-	2	-	2	2				
CO3	3	3	3	3	3	-	-	-	2	-	2	2				
Average	3	3	3	3	3	-	-	-	2	-	2	2				

Hoper

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

Subject:	Mecha	nical N	leasur	ement	s and I	Netrolo	gy		S	ubjec	t Cod	le: 181	ME46	В		
						Cours	se Out	tcome	S							
CO1	Unde	erstand	d metr	ology,	its adv	/ancen	nents 8	& mea	suring	instru	ments,	?				
CO2	linea		angu									ation o neasu		l Bars nt &	,	
CO3	Equi	Equip with knowledge of limits, fits, tolerances and gauging.														
CO4		Acquire knowledge of measurement systems and methods with emphasis on different transducers, intermediate modifying and terminating devices														
CO5		Understand the measurement of Force, Torque, Pressure, Temperature and Strain.														
		CO-PO-PSO Mapping														
COs						PO	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	2	-	2	2				
000																
CO2	3 3 3 3 3 2 2 2															
CO2 CO3	3 3	3 3	3 3	3 3	3 3	-	-	-	2 2	-	2 2	2 2				
	-	-	-	-	-		- - -									
CO3	3	3	3	3	3	-	- - - -	-	2	-	2	2				

Semester-V

Subject:	MANAGEMENT AND	Subject Code: 18ME51
	RENEURSHIP	U
	Course	Outcomes
CO1		
	Examine the meaning, importa	nce, nature of management, its difference
	between management and adr	ninistration and role of managers in
	management. Describe effectiv	e communication process, its importance,
	types and purpose for running	an organization.
CO2	Examine the meaning chara	cteristics principles and process of
	organizing.	
CO3	Explain the importance of en	gineering economics, Law of demand
	and supply in engineering de	ecision making.
CO4	Describe various interest rat	e factors and implement the same for
	economic decision making.	
CO5	Examine different economic	analysis methods-NPW, EAW, IRR, FW
	for decision making.	
CO6		t of costs and methods of cost estimation.
C07	Explain depreciation, different	nt methods of computing depreciation.

Hope Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO8	Disc	uss ta	axatic	on cor	ncept	s-inco	ome t	ax an	d cor	porat	e tax	es.			
	•				CO	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	•
	1	2	12	1	2	3									
CO1	3 3 3 2 3														
CO2	3	3	-	-	3	2	-	-	-	-	3	2			
CO3	3	3	2												
CO4	3	3	-	-	3	2	-	-	-	-	3	2			
CO5	3	3	-	-	3	2	-	-	-	-	3	2			
CO6	3	3	-	-	3	2	-	-	-	-	3	2			
C07	3	3	-	-	3	2	-	-	-	-	3	2			
CO8	3 3 3 2 3														
Average	3	3	-	-	3	2	-	-	-	-	3	2			

Subject:	Energ	y and I	Enviro	nment							Subj	ect Co	ode: 1	8ME5	62	
						Cours	se Out	tcome	S							
CO1	Unde	erstan	id ene	ergy so	enari	o, ene	ergy so	ources	and t	heir u	tilizat	ion				
CO2		Learn about methods of energy storage, energy management and economic analysis														
CO3	Hav	Have proper awareness about environment and eco system.														
CO4	Unde	Understand the environment pollution along with social issues and acts.														
	CO-PO-PSO Mapping															
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	3	2	2	2	-	-	-	-	3	3				
CO2	3	2	3	2	2	2	-	-	-	-	3	3				
CO3	3	2	3	2	2	2	-	-	-	-	3	3				
CO4	3	2	3	2	2	2	-	-	-	-	3	3				
Average	3	2	3	2	2	2	-	-	-	-	3	3				

Subjec	t: Dynamics of Machinery	Subject Code: 18ME52
	Course Outcomes	
CO1	To gain the knowledge static and dynamic equilibrium subjected forces and couple, with and without friction	
CO2	Analyze the mechanisms for static and dynamic equili	brium.
CO3	To understand the balancing principles of rotat masses, governors and gyroscopes.	ing and reciprocating
CO4	Analyze the balancing of rotating and reciprocating magyroscopes.	asses, governors and
CO5	To understand vibrations characteristics of sing systems.	gle degree of freedom

Hoper Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO6					vith a	ndw	ithou	t dan	nping		subj	ected	to fre	ee an	d
					C	D-PO-	-PSO	Mapp	ing						
COs POs F															5
															3
CO1	3	3	-	3	-	-	-	-	-	-	3	2			
CO2	3	3	-	3	-	-	-	-	-	-	3	2			
CO3	3	3	-	3	-	-	-	-	-	-	3	2			
CO4	3	3	-	3	-	-	-	-	-	-	3	2			
CO5	3	3	-	3	-	-	-	-	-	-	3	2			
CO6	3	3	-	3	-	-	-	-	-	-	3	2			
Average	3	3	-	3	-	-	-	-	-	-	3	2			

Subject:	Turbo	Machi	nes								Subj	ect Co	ode: 1	8ME5	3
						Cours	se Out	tcome	s						
CO1	for e	nergy		forma	•									ery uso Iydrau	
CO2	machines														
CO3															
					C	D-PO-	-PSO	Mapp	ing						
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	-	-	2	2			
CO2	3	2	2	3	3	-	-	-	-	-	2	2			
CO3	3	2	2	3	3	-	-	-	-	-	2	2			
Average	3	2	2	3	3	-	-	-	-	-	2	2			

Subject:	Non-Traditional Machining	Subject Code: 18ME554
	Course Outcomes	
CO1	Understand the compare traditional and non-traditional recognize the need for Non-traditional machining proc	
CO2	Understand the constructional features, performance characteristics, applications, advantages and limitation	
CO3	Identify the need of Chemical and electro-chemical mathematical the constructional features, process parameters, process parameters, process parameters, advantages and limitations.	0, 0
CO4	Understand the constructional feature of the equipment process characteristics, applications, advantages and	nt, process parameters, limitations EDM & PAM.
CO5	Understand the LBM equipment, LBM parameters, an equipment and mechanism of metal removal, applicat	

Hoper Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

	limita	ations	LBM	& EB	M.											
					CO	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	3	3	-	-	3	-	-	2	-				
CO2	3	2	2	3	3	-	-	3	-	-	2	-				
CO3	3	2	2	3	3	-	-	3	-	-	2	-				
CO4	3	2	2	3	3	-	-	3	-	-	2	-				
CO5	3	2	2	3	3	-	-	3	-	-	2	-				
Average	3															
Subject:	Desigr	esign of Machine Elements - I Subject Code: 18ME54														
	Design of Machine Elements - I Subject Code: 18ME54 Course Outcomes															
CO1	Able	to un	derst	and m	echar	nical d	esign	proce	dure,	mate	rials, c	codes	and u	se of		
	stan	dards														
CO2	Able	to de	sign r	nachi	ne co	mpon	ents f	or sta	tic, im	pact a	and fa	tigue	streng	gth.		
CO3	Able	to de	sign f	asten	ers, s	hafts,	joints	, coup	olings	, keys	, threa	aded f	asten	ers		
	rivet	ed joi	nts, w	elded												
					C			Mapp	ing							
COs							Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	3	3	-	1	-	-	-	3	-				
CO2	3	3	2	3	3	-	1	-	-	-	3	-				
CO3	3	3	2	3	3	-	1	-	-	-	3	-				
Average	3	3	2	3	3	-	1	-	-	-	3	-				

Subject:	Fluid N	Necha	nics &	Mach	inery L	ab	Sul	bject	Code	:18M	EL57				
						Cours	se Out	tcome	S						
CO1	vario	ous ty	pes of									ureme ses as		sing ed wit	h
CO2	and will b	these devices. Energy conversion principles, analysis and understanding of hydraulic turbines and pumps will be discussed. Application of these concepts for these machines will be demonstrated. Performance analysis will be carried out using characteristic curves. CO-PO-PSO Mapping													
COs							<u></u> Os	Mapp	mε					PSOs	
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	-	3	-	-	-	-			
CO2	3	3	-	3	3	-	-	3	-	-	-	-			
Average	3	3	-	3	3	-	-	3	-	-	-	-			

Hope -

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

Subject:	Energ	y Lab								Sul	bject	Code	18M	EL58	
						Cours	se Out	tcome	s						
CO1										fuel p devic		ties ar	nd its		
CO2	disci dem	ussed onstra	l. App	licatio	n of tl	hese o	conce	pts fo	r thes	e mao	chines	s will b	e	s will b stic	e
CO3	demonstrated. Performance analysis will be carried out using characteristic curves. Exhaust emissions of I C Engines will be measured and compared with the standards. CO-PO-PSO Mapping														
	-				C			wiapp	mg				[
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	2	3	-	-	-	2	-	-	1			
CO2	3	3	-	2	3	-	-	-	2	-	-	1			
CO3	3	3	-	2	3	-	-	-	2	-	-	1			
Average	3	3	-	2	3	-	-	-	2	-	-	1			

Semester-VI

Subject:	Finite	Eleme	nt Ana	Ivsis			Sul	biect	Code	: 18M	E61				
						Cours	se Out	U							
CO1	To le	earn b	asic p	princip	les of	finite	elem	ent ar	nalysi	s proc	edure).			
CO2						aracte	eristics	s of fin	ite el	ement	s that	t repre	esent		
CO3	engineering structures. To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the knowledge and skills needed to effectively evaluate finite element analyses. CO-PO-PSO Mapping														
					C			Mapp	ıng						
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	2	3	-	-	-	2	-	-	1			
CO2	3	3	-	2	3	-	-	-	2	-	-	1			
CO3	3	3	-	2	3	-	-	-	2	-	-	1			
Average	3	3	-	2	3	-	-	-	2	-	-	1			

Subject:	Industrial Safety	Subject Code: 18ME662
	Course	Outcomes
CO1		and evaluate occupational safety and health determine appropriate hazard controls following

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Hoper

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO2										effects to pre		orkpla	ce ex	posure	es,	
CO3								ols, eff	ective	e safet	y and	l healt	h mar	nagem	ent	
	systems and task-oriented training. CO-PO-PSO Mapping															
COs		POs PSOs														
	1	POs PSOs I 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3	2	2	3	3	-	-	-	-	-	2	2				
CO2	3	2	2	3	3	-	-	-	-	-	2	2				
CO3	3	2	2	3	3	-	-	-	-	-	2	2				
Average	3	2	2	3	3	-	-	-	-	-	2	2				

Subject:	Comp	uter in	tegrate	ed Mar	nufactu	uring	Sul	bject	Code	: 18M	E62					
						Cours	se Out	tcome	s							
CO1				ledge nathe				matio	n and	differ	ent co	oncept	ts of a	utoma	ation	
CO2										pplica [.] integ		in Des	sign a	nd		
CO3	syste devie		Enabl	e ther	n to p	erforn	n vario	ous tra	ansfoi	matio	ns of	entitie	es on o	display	/	
CO4										embly S.	lines,	Line I	Balano	cing		
CO5		Techniques, and Flexible Manufacturing Systems. To expose students to computer aided process planning, material requirement planning, capacity planning etc. To expose the students to CNC Machine Tools, NC part programming, and industrial robots.														
CO6	То е	lanning, capacity planning etc. o expose the students to CNC Machine Tools, NC part programming, and industrial robots.														
C07		To expose the students to CNC Machine Tools, NC part programming, and industrial robots. To introduce the students to concepts of Additive Manufacturing, Internet of Things, and Industry 4.0leading to Smart Factory.														
	1				C		-PSO	Mapp	ing							
COs		-	-				Os	-		1				PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	2	1	-	-	-	-	-	-	1				
CO2	3	3	2	2	1	-	-	-	-	-	-	1				
CO3	3	3	2	2	1	-	-	-	-	-	-	1				
CO4	3	3	2	2	1	-	-	-	-	-	-	1				
CO5	3	3	2	2	1	-	-	-	-	-	-	1				
CO6	3	3	2	2	1	-	-	-	-	-	-	1				
C07	3	3	2	2	1	-	-	-	-	-	-	1				
Average	3	3	2	2	1	-	-	-	-	-	-	1				

Hope -7

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Subject:	Heat T	ransfe	er				Sul	bject	Code	: 18M	E63				
						Cours	e Out	tcome	s						
CO1	Stud	ly the	mode	s of h	eat tra	ansfei									
CO2		n how Iems.		rmula	ate an	d solv	e 1-D	stead	ly and	unste	eady h	neat co	onduc	tion	
CO3										minar Iems.	•	ulent i	nterna	al flows	6
CO4	Stud	udy the basic principles of heat exchanger analysis and thermal design. Inderstand the principles of boiling and condensation including radiation heat													
CO5		Inderstand the principles of boiling and condensation including radiation heat ransfer related engineering problems. CO-PO-PSO Mapping													
					CO	D-PO-	PSO	Mapp	ing						
COs						PO	Ds							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	3	3	-	-	-	1	-	-	1			
CO2	2	2	I	З	3	-	I	I	1	-	-	1			
CO3	2	2	-	3	3	-	-	-	1	-	-	1			
CO4	2	2	-	3	3	-	-	-	1	-	-	1			
CO5	2	2	-	3	3	-	-	-	1	-	-	1			
Average	2	2	-	3	3	-	-	-	1	-	-	1			

Subject:	Desigr	n of Ma	achine	Eleme	ents -I	I				Sub	ject C	Code:	18ME	64	
						Cours	se Ou	tcome	S	•					
CO1	To u	nders	tand	variou	s eler	nents	invol	ved in	a me	chani	cal sy	stem.			
CO2										of a r s, and				m and	
CO3				nissio catalo		nents	like g	jears,	belts,	, pulle	ys, be	earing	s from	the	
CO4	To d	o produce assembly and working drawings of various mechanical systems													
CO5	invol	To design completely a mechanical system integrating machine elements. To produce assembly and working drawings of various mechanical systems involving machine elements like belts, pulleys, gears, springs, bearings, clutches and brakes. CO-PO-PSO Mapping													
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	\$
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	-	-	-	1			
CO2	3	2	2	3	3	-	-	-	-	-	-	1			
CO3	3	2	2	3	3	-	-	-	-	-	-	1			
CO4	3	2	2	3	3	-	-	-	-	-	-	1			
CO5	3	2	2	3	3	-	-	-	-	-	-	1			
Average	3	2	2	3	3	-	-	-	-	-	-	1			

Hopez

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Subject:	Autom	obile E	Engine	ering						Sul	oject	Code:	18MI	E655	
						Cours	se Out	tcome	s						
CO1	Expl	ain th	e fund	damer	ntals o	of ope	rating	syste	m						
CO2		•	•	ocess	s man	agem	ent, n	nemor	y mai	nagen	nent a	ind sto	orage		
CO3	Fam	nanagement. Familiar with various types of operating systems CO-PO-PSO Mapping													
	CO3 Familiar with various types of operating systems CO-PO-PSO Mapping														
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	2	-	2	-	-	-	-	-	1	1			
CO2	-	-	2	-	2	-	-	-	-	-	1	1			
CO3	-	-	2	-	2	-	-	-	-	-	1	1			
Average	-	-	2	-	2	-	-	-	-	-	1	1			

Subject:	Heat T	ransfe	er Lab				Su	bject	Code	:18M	EL67				
						Cours	se Out	tcome	S						
CO1												ental	knowl	edge	
CO2	and radia	Accessary to understand the behavior of thermal systems. This course provides a detailed experimental analysis, including the application and heat transfer through solids, fluids, and vacuum. Convection, conduction, and diation heat transfer in one and two dimensional steady and unsteady systems a examined. CO-PO-PSO Mapping													
COs						P	Os							PSOs	;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				3			3	3	3	3			
CO2	3	3				3			3	3	3	3			
Average	3	3				3			3	3	3	3			

Subject	: Model	ing an	d Ana	lysis La	ab (FE	A)	Su	bject	Code	: 18M	EL68					
		Course Outcomes To acquire basic understanding of Modeling and Analysis software														
CO1	To a	cquir	e basi	c und	erstar	nding	of Mo	deling	g and	Analy	sis so	ftware	;			
CO2	out t	To understand the different kinds of analysis and apply the basic principles to find out the stress and other related parameters of bars, beams loaded with loading conditions.														
CO3								o carry beams		dynam	nic an	alysis	to kn	ow the	÷	
					CO	O-PO-	-PSO	Mapp	ing							
COs						P	Os							PSOs	3	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	

Hoper Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

CO1	3	3	3	-	-	-	-	-	3	-	-	-		
CO2	3	3	3	-	-	-	-	-	3	-	-	-		
CO3	3	3	3	-	-	-	-	-	3	-	-	-		
Average	3	3	3	-	-	-	-	-	3	-	-	-		

Semester-VII

Subject:	Energ	y Eng	gineer	ing			Su	bject	Code	: 18M	E71						
						Cours	e Ou	tcome	S.								
CO1										d their	utiliza	ation, l	_earn	about			
						s and											
CO2	Stuc	ly the	the principles of renewable energy conversion systems. stand the concept of green energy and zero energy.														
CO3	Und	erstar	rstand the concept of green energy and zero energy.														
		erstand the concept of green energy and zero energy. CO-PO-PSO Mapping															
COs						PC	Os							PSOs	5		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	3	-	2	-	-	-	-	-	-	-					
CO2	2	2	3	-	2	-	-	-	-	-	-	-					
CO3	2	2	3	-	2	-	-	-	-	-	-	-					
Average	2	2	3	-	2	-	-	-	-	-	-	-					

Subject:	Fluid	Powe	r Syst	ems			Sul	bject	Code	:18M	E72						
						Cours	se Out	tcome	S								
CO1	То р	rovide	e an ir	nsight	into t	he ca	pabilit	ies of	hydra	aulic a	nd pr	euma	tic flu	id pow	ver.		
CO2						nd rela ystem		hips s	urrou	nding	force	, pres	sure,	energy	/		
CO3	actu	ators,	amine concepts centering on sources of hydraulic power, rotary and linear ors, distribution systems, hydraulic flow in pipes, and control components in ower systems. ure to build and interpret hydraulic and pneumatic circuits related to														
CO4	Expo		sure to build and interpret hydraulic and pneumatic circuits related to industrial applications. miliarize with logic controls and trouble shooting														
CO5	To fa	amilia	rize w	ith log	gic co	ntrols	and t	rouble	shoc	oting							
					CO	D-PO-	PSO	Mapp	ing								
COs						P	Os							PSOs	5		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	-	3	3	-	-	-	1	-	-	1					
CO2	3	3	-	3	3	-	-	-	1	-	-	1					
CO3	3	3	-	3	3	-	-	-	1	-	-	1					
CO4	3	3	-	3	3	-	-	-	1	-	-	1					
CO5	3	3	-	3	3	-	-	-	1	-	-	1					
Average	3	3	-	3	3	-	-	-	1	-	-	1					

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Subject:	Tribol	Course Outcomes educate the students on the importance of friction, the related theories/laws of ing and rolling friction and the effect of viscosity of lubricants. expose the students to the consequences of wear, wear mechanisms, wear pries and analysis of wear problems. make the students understand the principles of lubrication, lubrication regimes, pries of hydrodynamic and the advanced lubrication techniques expose the students to the factors influencing the selection of bearing rerials for different sliding applications. ntroduce the concepts of surface engineering and its importance in tribology. CO-PO-PSO Mapping														
						Cours	se Out	tcome	S							
CO1													heorie	es/laws	s of	
CO2									es of w	vear, v	vear r	necha	anisma	s, wea	r	
CO3														n regir	nes,	
		pries of hydrodynamic and the advanced lubrication techniques expose the students to the factors influencing the selection of bearing														
CO4		xpose the students to the factors influencing the selection of bearing														
		erials for different sliding applications.														
CO5	To ir	ntrodu	ce the	e cono	cepts	of sur	face e	engine	ering	and i	ts imp	ortan	ce in t	ribolo	ју.	
					C	D-PO-	-PSO	Mapp	ing							
COs						P	Os							PSOs	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	-	-	-	-	-	-	-	2	-				
CO2	2	2	3	-	-	-	-	-	-	-	2	-				
CO3	2	2	3	-	-	-	-	-	-	-	2	-				
CO4	2	2	3	-	-	-	-	-	-	-	2	-				
CO5	2	2	3	-	-	-	-	-	-	-	2	-				
Average	2	2	3	-	-	-	-	-	-	-	2	-				

Subject:	Mech	atron	ics				Sul	bject	Code	:18M	E753						
						Cours	se Out	tcome	S.								
CO1	Und	erstar	nd the	evolu	ition a	and de	evelop	ment	of Me	chatr	onics	as a c	discipli	ne.			
CO2	Sub	stantia	ate the	e need	d for ii	nterdi	sciplir	nary st	tudy i	n tech	nolog	y edu	cation	•			
CO3			tantiate the need for interdisciplinary study in technology education. erstand the applications of microprocessors in various systems and to know unctions of each element onstrate the integration philosophy in view of Mechatronics technology														
CO4	Dem	unctions of each element onstrate the integration philosophy in view of Mechatronics technology CO-PO-PSO Mapping															
					CC	D-PO-	PSO	Mapp	ing								
COs						P	Os							PSOs	5		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	-	2	3	-	-	-	-	-	-	1					
CO2	2	2	-	2	3	-	-	-	-	-	-	1					
CO3	2	2	-	2	3	-	-	-	-	-	-	1					
CO4	2	2	-	2	3	-	-	-	-	-	-	1					
Average	2	2	-	2	3	-	-	-	-	-	-	1					

Subject:	Control Engineering	Subject Code: 18ME73
	Course Outcome	es
CO1	Modeling of mechanical, hydraulic, pneuma	tic and electrical systems.
CO2	Representation of system elements by bloc	ks and its reduction
CO3	Transient and steady state response analys	sis of a system.
CO4	Frequency response analysis using polar pl	ot.

Hoper Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO5	Freq	luency	y resp	onse	analy	sis us	ing bo	ode pl	ot.							
CO6	Anal	ysis c	of syst	em us	sing ro	oot loo	cus plo	ots.								
C07	Diffe	erent s	systen	n com	pensa	ators a	and va	ariable	e char	acteri	stics o	of line	ar sys	tems.		
		CO-PO-PSO Mapping														
COs		POs PSOs														
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	-	- 2 - 2 3 2 2														
CO2	-	2	-	2	3	-	-	-	2	-	-	2				
CO3	-	2	-	2	3	-	-	-	2	-	-	2				
CO4	-	2	-	2	3	-	-	-	2	-	-	2				
CO5	-	2	-	2	3	-	-	-	2	-	-	2				
CO6	-	2	-	2	3	-	-	-	2	-	-	2				
C07	-	2	-	2	3	-	-	-	2	-	-	2				
Average	-	2	-	2	3	-	-	-	2	-	-	2				

Subject:	CIM L	ab					Su	bject	Code	: 18M	EL77						
						Cours	se Ou	tcome	s								
CO1	Drav	v the g	geom	etric n	nodels	s of sy	/mme	tric, c	ambe	red a	ero foi	il, noz	zle, w	ing an	d		
	othe	r struc	ctures														
CO2	Appl	y diffe	different types of meshing. n the flow and stress analysis.														
CO3	Perf	orm th	m the flow and stress analysis. CO-PO-PSO Mapping														
					CO	D-PO-	-PSO	Mapp	ing								
COs						P	Os							PSOs	5		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	3	1	-	-	-	-	-	-	-	-					
CO2	2	2	3	1	-	-	-	-	-	-	-	-					
CO3	2	2	3	1	-	-	-	-	-	-	-	-					
Average	2	2	3	1	-	-	-	-	-	-	-	-					

Subject I	DESI	GN L/	AB				Su	bject	Code	: 18M	EL76				
						Cours	se Out	tcome	s						
CO1		nders ping.	tand f	he na	itural	freque	ency,	logarit	thmic	decre	ment,	, damp	oing ra	atio an	d
CO2	To u	understand the balancing of rotating masses. understand the concept of the critical speed of a rotating shaft.													
CO3	To u	understand the concept of the critical speed of a rotating shaft.													
CO4	To u	understand the concept of the critical speed of a rotating shaft. understand the concept of stress concentration using Photo elasticity.													
CO5		nders ernor.		he ec	luilibri	um sp	beed,	sensit	tivene	ess, po	ower a	and ef	fort of		
					CO	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	-			

Hopez Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO2	2	2	3	1	-	-	-	-	-	-	-	-		
CO3	2	2	3	1	-	-	-	-	-	-	-	-		
CO4	2	2	3	1	-	-	-	-	-	-	-	-		
CO5	2	2	3	1	-	-	-	-	-	-	-	-		
Average	2	2	3	1	-	-	-	-	-	-	-	-		

Subject:	Proje	ct Work	Phase	e - 1			Su	bject	Code	e: 18N	/EP78	3			
					Cou	rse ()utco	mes							
CO1	Iden	Identify and interpret the realistic mechanical engineering problems and related													
	systems.														
CO2	Apply the basic principles and concepts of mechanical engineering in real world														b
	systems based on professional ethics and responsibilities.														
CO3	Criticize and experiment to achieve optimum solutions for mechanical engineering														
	problems.														
CO4		•			eview t	he ob	otaine	ed solu	ution	for pr	oblem	ns in m	necha	anical	
			syster												
CO5			•		nalism v							nmuni	catior	n skill	s
	and	relate e	enginee	ering i	issues t	to bro	bader	socie	tal co	ontext					
					CO-P	O-PS	O Ma	apping	5						
COs						POs	5							PSO	S
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				1	2	2	-	3	3	1	2			
CO2	3	1			2	1	-	1	3	3	1	3			
CO3	3	2	2	2	2	2	1		3	3	1	2			
CO4	3	2	2	2	2	2	1		3	3	1	2			
CO5															
Average	2.5	2.33	2.33	2	1.75	2	2	2.5	3	3	1.6	2.6			

S	Subject: Operations Research Subject Code: 18ME81														
	Course Outcomes														
CO1 To enable the students to understand the scientific methods of providing various departments of an organization with a quantitative basis of decision making.															f an
CO2	optim	nal solu	tions t	entsto u o probl erials ar	ems in nd mac	volving	g limite	ed reso	urces i		s and to	echniqu	ies in fi	inding	
COs						PC	Ds							PSOs	;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2	3	1	-	-	-	-	-	-	-	2			
Average	2	2	3	1	-	-	-	-	-	-	-	2			

Subject: Additive Manufacturing	Subject Code: 18ME82
---------------------------------	----------------------

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail: sdit kenjar@rediffmail.com

					(Cours	se Ou	tcome	s						
CO1	Understand the additive manufacturing process, polymerization and powder metallurgy process													у	
CO2	Unde	Understand characterization techniques in additive manufacturing.													
CO3	Acquire knowledge on CNC and Automation.														
	CO-PO-PSO Mapping														
COs		POs PSOs													;
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2	3	1	-	-	-	-	-	-	-	2			
CO3	2	2 2 3 1 2													
Average	2	2	3	1	-	-	-	-	-	-	-	2			

Subjec	ct: Inte	ernship	/ Profe	essiona	l Practi	ce	Su	bject	Code	: 18M	E84				
	Course Outcomes														
CO1	Conduct experiments to evaluate the design characteristics of various machine elements subjected to various loading.														e
CO2		Analyse the theoretical and experimental concept in machine elements subjected to various loading.													
CO3		Understand and discuss the design characteristics of various systems subjected to mechanical loading.													ed
					CO	D-PO-	PSO	Mapp	ing						
COs						PO	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2	3	1	-	-	-	-	-	-	-	2			
CO3	2	2	3	1	-	-	-	-	-	-	-	2			
Average	2	2	3	1	-	-	-	-	-	-	-	2			

Subj	ect: Pro	oduct l	ife cycl	e mana	igemer	nt	Su	bject	Code	:18M	E835				
						Cours	se Out	tcome	S						
CO1	Familiarize with various strategies of PLM														
CO2	Und	Understand the concept of product design and simulation.													
CO3	Develop New product development ,product structure and supporting systems														
CO4	Interpret the technology forecasting and product innovation and development in business processes.														1
CO5	Und	erstan	d pro	duct b	uildin	ig and	Prod	uct Co	onfigu	ration	•				
					CO	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	5
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2 2 3 1 2													
CO3	2	2	3	1	-	-	-	-	-	-	-	2			

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

CO4	2	2	3	1	-	-	-	-	-	-	-	2		
CO5	2	2	3	1	-	-	-	-	-	-	-	2		
Average	2	2	3	1	-	-	-	-	-	-	-	2		

Subject:	Project	t Phase –	·				Su	bject	Code	e: 18N	ЛE85				
					Cou	rse ()utc o	mes							
CO1	Identify and interpret the realistic mechanical engineering problems and related														ł
-	systems.														-
CO2		Apply the basic principles and concepts of mechanical engineering in real world													
	systems based on professional ethics and responsibilities.														
CO3	Criticize and experiment to achieve optimum solutions for mechanical engineering problems.													ring	
CO4	Analyze, evaluate and review the obtained solution for problems in mechanical engineering systems.														
CO5	Dem	onstrat	te profe	ssior	nalism v	with e	thics	; prese	ent ef	ffectiv	e con	nmuni	catior	n skill	S
					issues										
					CO-P	O-PS	O Ma	apping	5						
COs						POs	5							PSO	S
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				1	2	2	-	3	3	1	2			
CO2	3	1			2	1	-	1	3	3	1	3			
CO3	3	2	2	2	2	2	1		3	3	1	2			
CO4	3	2	2	2	2	2	1		3	3	1	2			
CO5															
Average	2.5	2.33	2.33	2	1.75	2	2	2.5	3	3	1.6	2.6			

	Subject: Seminar Subject Code: 18MES86														
	Course Outcomes														
CO1	Iden	Identify recent technical topics from interested domains													
CO2	Acqu	Acquire basic skills for performing literature survey.													
CO3	Impr	Improve their Presentation and Communication skills.													
CO4	Dev	Develop skills for preparing technical report													
	CO-PO-PSO Mapping														
COs						PC	Os							PSOs	•
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2	3	1	-	-	-	-	-	-	-	2			
CO3	2	2	3	1	-	-	-	-	-	-	-	2			
CO4	2	2 2 3 1 1 1													
Average	2	2	3	1	-	-	-	-	-	-	-	1.8			

Principal

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALOBE