

SHREE DEVI INSTITUTE OF TECHNOLOGY Airport Road, Kenjar, Mangalore-574142 Affiliated to Visvesvaraya Technological University, Belagavi. Approved by AICTE, New Delhi. Department of Aeronautical Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

III / IV - Semester

Subject: TF	RANSF	ORM C	CALCUI	US, FO	OURIEI	R SERII	ES ANI	D NUM	1ERICA	L S	Subje	ct Co	de: 17	MAT31		
TECHNIQUE	S															
					(Cours	se Ou	tcome	es							
CO1	Use I	aplace	e trans	form a	and inv	/erse L	aplace	e trans	sform i	n solvi	ng diff	erenti	al/ inte	egral		
	equa	tion a	rising i	n netv	vork aı	nalysis	, cont	rol sys	tems a	nd oth	ner fiel	ds of e	enginee	ering.		
CO2	Dem	onstra	te Fou	rier se	eries to	o study	the b	ehavio	or of p	eriodic	functi	ons ar	nd thei	r		
	appli	cation	s in sy	stem c	commu	unicati	ons, d	igital s	ignal p	process	sing an	nd field	l theor	у.		
CO3	Make	e use c	of Four	ier tra	nsforn	n and 2	Z-tran	sform	to illus	strate o	discret	e/cont	tinuous	s functi	on	
	arisir	ng in w	vave ar	nd hea	t prop	agatio	n, sigr	nals an	d syste	ems.						
CO4	Solve	e first a	and see	cond o	order o	rdinar	y diffe	erentia	l equa	tions a	rising	in engi	ineerir	ig prob	lems	
	using	using single step and multistep numerical methods. Determine the externals of functionals using calculus of variations and solve problems														
CO5	Dete	Ising single step and multistep numerical methods. Determine the externals of functionals using calculus of variations and solve problems														
	arisir	ng in d	ynami	cs of ri	igid bo	dies a	nd vib	ration	al anal	ysis.						
					CC)-PO-	PSO	Map	ping							
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	-	-	-	-	-	-	2				
CO2	3	3	-	3	3	-	-	-	-	-	-	2				
CO3	3	3	-	3	3	-	-	-	-	-	-	2				
CO4	3	3	-	3	3	-	-	-	-	-	-	2				
CO5	3	3	-	3	3	-	-	-	-	-	-	2				
Average	3	3	-	3	3	-	-	-	-	-	-	2				

Subject: A	ERO TI	HERM	ODYN/	AMICS			Su	bject	Code	: 17AE	32					
						Cour	se O	utcom	ies							
CO1	Appl	y the o	concep	ots and	d defin	itions	of the	rmody	namio	cs.						
CO2	Diffe	rentia	te the	rmody	namic	work	and h	eat an	d appl	y I law	ı and I	I law c	of therr	nodyn	amics	
	to di	fferen	t proc	ess.												
CO3	Appl	y the p	orincip	les of	variou	s gas o	ycles.									
	CO-PO-PSO Mapping															
COs		POs PSOs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	-	2	-	3	-	2	2				
CO2	3	3	-	3	3	-	2	-	3	-	2	2				
CO3	3	3	-	3	3	-	2	-	3	-	2	2				
Average	3	3	-	3	3	-	2	-	3	-	2	2				

Hopez

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: N	IECHA	NICS C	DF MA	TERIAL	S		Su	bject	Code	: 17AE	33				
						Cour	se Oi	utcom	nes						
CO1	Appl	y the b	basic c	oncep	ts of s	trengtł	n of m	ateria	ls.						
CO2	Com	pute s	tress,	strain	under	differe	ent loa	adings							
CO3	Disti	nguish	the p	ropert	ies of	differe	nt ma	aterials	5.						
	CO-PO-PSO Mapping														
COs	POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	2			
CO2	3	3	3	3	3	-	-	-	-	-	-	2			
CO3	3	3	3	3	3	-	-	-	-	-	-	2			
Average	3	3	3	3	3	-	-	-	-	-	-	2			

Subject: El	LEMEN	ITS OF	AERO	NAUT	ICS		Sul	oject (Code	: 17AE	34				
					(Cours	e Out	tcome	s						
CO1	Appr	eciate	and a	pply t	he bas	ic prin	ciple o	of avia	tion.						
CO2	Appl [.] prop	y the o ulsion	concep and a	ots of f ircraft	undan matei	nents d rials du	of fligh Iring t	nt, bas he dev	ics of a velopn	aircraf nent o	t struc f an ai	tures, rcraft.	aircra	ft	
CO3	Com	prehei	nd the	comp	lexitie	s invol	ved d	uring o	develo	pmen	t of flig	ght vel	hicles.		
	CO-PO-PSO Mapping														
COs						PC)s							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	2			
CO2	3	3	3	3	3	-	-	-	-	-	-	2			
CO3	3	3	3	3	3	-	-	-	-	-	-	2			
Average	3	3	3	3	3	-	-	-	-	-	-	2			

Subject: N	lechan	ics of	Fluids				Sul	bject	Code	: 17AE	35				
					(Cours	e Out	tcome	es						
CO1	Evalu	iate th	ie effe	ct of f	luid pr	operti	es.								
CO2	Apply	y the g	govern	ing lav	ws of f	luid flo	w								
CO3	Class	ify dif	ferent	types	of flui	d flow	'S.								
	•				CC)-PO-	PSO	Mapp	ing						
									-						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	-	-	-	-	-	1			
CO2	3	3	-	3	3	-	-	-	-	-	-	1			
CO3	3	3	-	3	3	-	-	-	-	-	-	1			
Average	3	3	-	3	3	-	-	-	-	-	-	1			

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: N	leasur	ement	and N	/letrol	ogy		Sul	bject	Code	: 17AE	36					
					(Cours	e Out	tcome	es							
CO1	Appl	y the s	tanda	rds of	meası	ureme	nt, sys	tem o	flimit	s, fits,	tolera	nces a	nd gau	ıging.		
CO2	Ident	tify an	d use a	approp	oriate	measu	ıring iı	nstrum	nents.							
CO3	Acqu	ire the	e knov	/ledge	on me	easure	ement	and m	leasur	ement	syste	ms				
	CO-PO-PSO Mapping															
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	3	3	-	-	-	-	-		1				
CO2	3	3	2	3	3	-	-	-	-	-		1				
CO3	3	3	2	3	3	-	-	-	-	-		1				
Average	3	3	2	3	3	-	-	-	-	-		1				

Subject: N	IEASUI	REME	NTS AN	ID ME	TROLO)GY LA	٨B		S	ubjec	t Cod	l e: 17/	AEL37A	4	
					(Cours	e Out	tcome	es						
CO1	Ident	tify an	d class	ify dif	ferent	meas	uring t	ools r	elated	to exp	perime	ents.			
CO2	Ident	tify, de	efine, a	and ex	plain a	accura	cy, pre	ecision	, and s	some a	additic	onal te	rminol	ogy.	
CO3	CO-PO-PSO Mapping														
	CO-PO-PSO Mapping														
COs						PO	Os							PSOs	
	1	2	З	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2	-	-	-	-	-	2				
CO2	3	3	3	3	2	-	-	-	-	-	2				
CO3	3	3	3	3	2	-	-	-	-	-	2				
Average	3	3	3	3	2	-	-	-	-	-	2				

Subject: M	ACHIN	E SHO	P LAB				Sul	oject (Code:	17AEI	.38				
					(Cours	se Out	tcome	S						
CO1	Dem	onstra	te the	operat	tion of	gener	al-pur	pose n	nachin	e tools	and n	nanufa	cturin	g proce	ess.
CO2	Ident	tify the	e specia	al purp	ose m	achine	e tools	for sp	ecific r	equire	ements				
CO3	Deve	lop ph	ysical	model	s using	g differ	ent m	anufac	turing	proce	sses.				
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-					
CO2	3	3	3	3	3	-	-	-	-	-					
CO3	3	3	3	3	3	-	-	-	-	-					
Average	3	3	3	3	3	-	-	-	-	-					

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: Co	ONSTI	Γυτιο	N OF I	NDIA,			Sul	bject (Code	: 17CP	C39				
PROFESSIO	NAL ET	THICS A	AND C	YBER	LAW (O	CPC)									
					(Cours	e Out	tcome	s						
CO1	Have	const	itutior	nal kno	owledg	ge and	legal	literac	у.						
CO2	Unde	erstan	d Engii	neerin	g and	Profes	sional	ethics	and r	espon	sibiliti	es of E	Ingine	ers.	
CO3	Unde	erstan	d the t	he cył	percrin	nes an	d cybe	er laws	s for cy	/ber sa	afety n	neasur	es.		
	CO-PO-PSO Mapping														
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	I	-	3	З	3	-	-	-	1			
CO2	-	-	-	I	-	3	З	3	-	-	-	1			
CO3	-	-	-	-	-	3	3	3	-	-	-	1			
Average	-	-	-	-	-	3	3	3	-	-	-	1			

Subject: CO	OMPLEX	ANAL	YSIS, F	PROBA	BILIT	Y	Sub	ject (Code	:17M	AT41					
AND STATIS	TICAL M	ETHO	DS													
						Cour	se O	utcon	nes							
CO1	Use the	e cono	cepts o	of ana	lytic f	unctio	n and	comp	olex p	otenti	als to so	lve th	e pr	oble	ms arisir	ng in
	electro	magn	etic fi	eld th	eory.											
CO2	Utilize	confo	rmal t	ransfo	ormat	ion an	d con	nplex	integr	al aris	ing in ae	ro foi	l th	eory,	fluid flo	w
	visualiz	ation	and ir	nage	proce	ssing.										
CO3	Apply o	discret	te and	conti	nuous	s prob	ability	/ distr	ibutio	ns in a	nalyzing	g the p	prob	babili	ty mode	ls
	arising	in en	gineer	ing fie	eld.											
CO4	Make u	ise of	the co	orrelat	tion a	nd reg	ressic	on ana	alysis t	to fit a	suitable	e math	nem	atica	ıl model	for
	the sta	the statistical data. Construct joint probability distributions and demonstrate the validity of testing the														
CO5	Constr	Construct joint probability distributions and demonstrate the validity of testing the														
	hypoth	esis.														
	-				C	O-PO	-PSC) Map	ping							
COs						PC)s								PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	-	-	-	-	-	-					
CO2	3	3	-	3	3	-	-	-	-	-	-					
CO3	3	3	-	3	3	-	-	-	-	-	-					
CO4	3	3	-	3	3	-	-	-	-	-	-					
CO5	3	3	-	3	3	-	-	-	-	-	-					
Average	3	3	-	3	3	-	-	-	-	-	-					

Subject: Al	ERODY	NAMI	CS-I				Sul	bject (Code:	17AE4	42				
						Cours	se Out	tcome	s						
CO1	Evalu	iate ty	pical a	irfoil c	haract	eristic	s and t	wo-di	mensio	onal flo	ows ov	er airfo	oil		
CO2	Com	Compute and analyze the incompressible flow over finite wings													
CO3	Apply finite wing theory and design high lift systems from the aerodynamics view point														
					C	O-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO1	3	3	3	3	3	-	-	-	-	3		
CO2	3	3	3	3	3	-	-	-	-	3		
CO3	3	3	3	3	3	-	-	-	-	3		
Average	3	3	3	3	3	-	-	-	-	3		

Subject: A	ircraft	Propu	lsion				Su	bject	Code	: 17AE	43				
					(Cours	e Ou	tcome	es						
CO1	Appl	y the b	basic p	rincip	le and	theory	y of ai	rcraft	propul	sion.					
CO2	Expla	ain the	funct	ions o	f centr	ifugal,	axial	compr	ressors	s, axial	and r	adial t	urbine	S	
CO3	Analy	yse the	e perfo	orman	ce of r	nozzles	s & inl	ets an	d com	bustio	n char	nber.			
	CO-PO-PSO Mapping														
COs	POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	2	-	3	-					
CO2	3	3	3	3	3	-	2	-	3	-					
CO3	3	3	3	3	3	-	2	-	3	-					
Average	3	3	3	3	3	-	2	-	3	-					

Subject: N	IECHA	NISMS	AND	MACH	INE TH	IEORY	Su	bject	Code	: 17AE	44				
					(Cours	e Out	tcome	es						
CO1	Appl mech	y the t nanism	heory s.	of vel	ocity,	accele	ration	and s	tatic fo	orce ai	nalysis	to de	sign of		
CO2	Desi	gn spu	r gear	s, gear	⁻ train,	balan	cing o	f rotat	ing an	d reci	procat	ing ma	asses.		
CO3	Apply governors and gyroscope														
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	1			
CO2	3	3	3	3	3	-	-	-	-	-	-	1			
CO3	3	3	3	3	3	-	-	-	-	-	-	1			
Average	3	3	3	3	3	-	-	-	-	-	-	1			

Subject: A	ircraft	Mater	ial Sci	ence			Sul	bject	Code	: 17AE	45				
					(Cours	e Out	tcome	es						
CO1	Ident	tify ap	propri	ate air	craft r	nateri	als for	a give	en app	licatio	n.				
CO2	Expla	in the	prope	erties o	of supe	er allo	ys, abl	ative r	materi	als an	d high	energ	y mate	erial.	
CO3	Understand material corrosion process and apply prevention technique.														
	CO-PO-PSO Mapping														
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-		-					
CO2	3	3	3	3	3	-	-	-		-					
CO3	3	3	3	3	3	-	-	_		_					

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Average	3	3	3	3	3	-	-	-		-					
---------	---	---	---	---	---	---	---	---	--	---	--	--	--	--	--

Subject: T	URBON	ИАСНІ	NES				Sul	bject	Code	: 17AE	46				
					(Cours	e Out	tcome	es						
CO1	Com	pute t	he ene	ergy tr	ansfer	and e	nergy	transf	ormat	ion in	turboı	machii	nes.		
CO2	Analy	yze th	e desig	gn of t	urbom	achine	e blad	es.							
CO3	Appl	y hydr	aulic p	oumps	and tu	urbine	s for s	pecific	: requi	remer	nts				
CO-PO-PSO Mapping															
COs	POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	2	3	-	-	-		-		1			
CO2	2	3	2	2	3	-	-	-		-		1			
CO3	2	3	2	2	3	-	-	-		-		1			
Average	2	3	2	2	3	-	-	-		-		1			

Subject: N	IEASUI	REME	NTS AN	ID ME	TROLO)GY LA	٨B		S	ubjec	t Cod	l e: 17/	AEL47	3	
					(Cours	e Out	tcome	es						
CO1	Ident	tify an	d class	ify dif	ferent	meas	uring t	ools r	elated	to exp	perime	ents.			
CO2	Ident term	tify, de inolog	efine, a y.	and ex	plain a	accura	cy, res	olutio	n, pre	cision,	and s	ome a	dditio	nal	
CO3	Conduct, Analyze, interpret, and present measurement data from measurements experiments.														
	-				CC)-PO-	PSO	Mapp	ing						
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	3	I	-	-		-	3				
CO2	2	2	2	2	3	-	-	-		-	3				
CO3	2	2	2	2	3	-	-	-		-	3				
Average	2	2	2	2	3	-	-	-		-	3				

Subject: C	OMPU	TER A	IDED A	IRCRA	FT DR	AWIN	G		S	ubjec	t Cod	l e: 17/	AEL48			
					(Cours	e Out	tcome	s							
CO1	Disti	nguish	draw	ings of	^f mach	ine an	d airc	raft co	mpon	ents						
CO2	Ident	tify as	sembly	/ draw	ings e	ither r	nanua	lly or b	oy usir	ng star	dard (CAD pa	ackage	s.		
CO3	Pract	tice wi	th sta	ndard	compo	onents	s and t	heir as	ssemb	ly of a	n aircr	aft.				
CO-PO-PSO Mapping																
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	2	-	2	2				
CO2	3	3	3	3	3	-	-	-	2	-	2	2				
CO3	3	3	3	3	3	-	-	-	2	-	2	2				
Average	3	3	3	3	3	-	-	-	2	-	2	2				

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

V / VI - Semester

Subject: M ENTREPRE	IANAC NEUR	GEMEN SHIP	NT AN	D			S	ubjec	t Cod	e: 17	AE51				
						Cours	se Ou	tcome	es						
CO1	Und	erstar	nd the	e basio	conc	epts c	of mai	nagen	nent,	planni	ing, oi	rganiz	ing an	d staf	fing.
CO2	Acqu	uire th	ne kno	wled	ge to	becor	ne en	trepre	eneur						
CO3	Com	prehe	end th	ie req	uirem	ients t	towar	ds the	e smal	I-scale	e indu	stries	and p	oroject	t
	preparation.														
	_				CO	D-PO-	PSO	Mapp	ing				-		
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	-	-	-	-	-	-	2	-			
CO2	2	2	3	-	-	-	-	-	-	-	2	-			
CO3	2	2	3	-	-	-	-	-	-	-	2	-			
Average	2	2	3	-	-	-	-	-	-	-	2	-			

Subject: IN	ITROE	DUCTI	ON TC)			Su	bject	Code	: 17A	E52				
COMPOSIT	E MA	TERIA	LS												
					(Cours	e Out	tcome	es						
CO1	Und	erstar	nd the	adva	ntage	s of c	ompo	site m	nateria	als coi	mpare	ed to d	convei	ntiona	I
	mat	erials													
CO2	Eval	uate t	he pr	operti	ies of	polyn	ner m	atrix c	ompo	osites	with f	iber r	einfor	ceme	nts
CO3	Exp	Explain the manufacturing process and applications of composite materials													
					CC)-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	2	2	-	-	-	1	-	-	1			
CO2	3	3	-	2	2	-	-	-	1	-	-	1			
CO3	3	3	-	2	2	-	-	-	1	-	-	1			
Average	3	3	-	2	2	-	-	-	1	-	-	1			

Subject: H TRANSFER	EAT A	ND M	ASS				Su	bject	Code	: 17A	E53				
						Cours	e Ou	tcome	es						
CO1	Und	erstar	nd the	e diffe	rent n	nodes	of he	eat tra	nsfer						
CO2	Und	erstar	nd the	free	conve	ection	and f	orced	conv	ection	ı.				
CO3	Acq	uire tl	ne kno	wled	ge of I	heat ti	ransfe	r prot	olems	in cor	nbust	ion ch	amber	rs.	
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	2	-	-	-	-	-	-	-			
CO2	2	2	3	-	2	-	-	-	-	-	-	-			
CO3	2	2	3	-	2	-	-	-	-	-	-	-			
Average	2	2	3	-	2	-	-	-	-	-	-	-			

Principal

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: 17	7AE54						Su	bject	Code	: 17A	E54					
						Cours	e Ou	tcome	es							
CO1	Con	prehe	end the	e basi	c con	cepts of	of stre	ess and	d strai	n.						
CO2	Acqu	uire th	ne kno	wled	ge of t	types	of loa	ds on	aeros	space	vehic	les.				
CO3	Und	erstar	nd the	theo	ry of e	elastic	ity.									
	CO-PO-PSO Mapping															
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	-	2	1	-	-	-	-	-	-	1				
CO2	2	2	-	2	1	-	-	-	-	-	-	1				
CO3	2	2	-	2	1	-	-	-	-	-	-	1				
Average	2	2	-	2	1	-	-	-	-	-	-	1				

Subject: T	HEOR	Y OF V	/IBRA	TIONS	5		Su	bject	Code	: 17A	E553					
						Cours	e Ou	tcome	es							
CO1	Und	erstar	nd the	basio	conc	epts c	of vibr	ation	s.							
CO2	Und	erstan	d the	worki	ing pr	incipl	e of v	ibrati	on me	asurir	ng ins	rume	nts.			
CO3	Acq	uire th	ne kno	wledg	ge of 1	numei	rical n	netho	ds for	multi	-degre	ee free	edom	systen	18.	
	CO-PO-PSO Mapping															
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	2	2	-	-	-	1	-	-	1				
CO2	3	3	-	2	2	-	-	-	1	-	-	1				
CO3	3	3	-	2	2	-	-	-	1	-	-	1				
Average	3	3	-	2	2	-	-	-	1	-	-	1				

Subject: A SYSTEMS	IRCRA	AFT TF	RANSF	ORTA	TION		Su	bject	Code	: 17A	E563				
						Cours	e Ou	tcome	es						
CO1	Und	erstar	nd the	e air tr	anspo	ort sys	stems								
CO2	Acq	uire tł	ne kno	wled	ge of a	aircrat	ft cha	racter	istics,	airlin	es and	1 airpo	ort.		
CO3	Und	lerstand the navigation and environmental systems.													
		CO-PO-PSO Mapping													
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	2	-	-	-	-	-	-	-			
CO2	2	2	3	-	2	-	-	-	-	-	-	-			
CO3	2	2	3	-	2	-	-	-	-	-	-	-			
Average	2	2	3	-	2	-	-	-	-	-	-	-			

Subject: A	ERODYNAMICS LAB	Subject Code: 17AEL57
	Course	Outcomes
CO1	Be acquainted with basic principle	es of aerodynamics using wind tunnel.
CO2	Acquire the knowledge on flow vi	sualization techniques.

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO3	Und	erstar	nd the	e proc	edure	s use	d for d	alcula	ating t	he lift	t and	drag.			
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2 3 4 5 6 7 8 9 10 11 12 1													
CO1	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO2	2	2	3	1	-	-	-	-	-	-	-	-			
CO3	2	2	3	1	-	-	-	-	-	-	-	-			
Average	2	2	3	1	-	-	-	-	-	-	-	-			

Subject: El	NERGY	Y CON	VERSI	ON &			Su	bject	Code:	17AF	EL58					
FLUID MEC	CHANI	CS LA	В													
						Cours	se Ou	tcome	es							
CO1	Fam	iliarize	e with	the fl	ash po	oint, fi	ire po	int an	d visco	osity c	of lubr	icating	g oils.			
CO2	Stud	y IC e	ngine	parts,	open	ing ar	nd clos	sing of	fvalve	es to d	raw tł	ne valv	/e-tim	ing		
	diag	ram.														
CO3	Gain	ain the knowledge of various flow meters and the concept of fluid mechanics. Inderstand the Bernoulli's Theorem.														
CO4	Und	nderstand the Bernoulli's Theorem.														
		Understand the Bernoulli's Theorem. CO-PO-PSO Mapping														
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	2	2	-	-	-	1	-	-	1				
CO2	3	3	-	2	2	-	-	-	1	-	-	1				
CO3	3	3	-	2	2	-	-	-	1	-	-	1				
CO4	3	3	-	2	2	-	-	-	1	-	-	1				
Average	3	3	-	2	2	-	-	-	1	-	-	1				

Subject: A	EROD	YNAM	1ICS-II	[Su	bject	Code	: 17A]	E61					
					(Cours	e Ou	tcome	s							
CO1	Und	erstar	nd the	conc	epts c	of com	press	ible fl	ow ar	nd sho	ock ph	enom	nenon			
CO2	Acqu	uire th	ne kno	wled	ge of (obliqu	ie sho	ck an	d exp	ansior	ו wav	e forn	nation	•		
CO3	Арр	reciat	e the	meas	ureme	ent in	high-	speed	flow.							
	CO-PO-PSO Mapping															
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	2	2	-	-	-	1	-	-	1				
CO2	3	3	-	2	2	-	-	-	1	-	-	1				
CO3	3	3	-	2	2	-	-	-	1	-	-	1				
Average	3	3	-	2	2	-	-	-	1	-	-	1				

Subject: G	AS TURBINE TECHNOLOGY	Subject Code: 17AE62
	Course	Outcomes
CO1	Comprehend the types of engines	and its applications.
CO2	Understand the materials require	d for engine manufacturing.
CO3	Acquire the knowledge of engine	performance and testing.

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	12	1	2	3								
CO1	2	2	3	-											
CO2	2	2	3	1	-	-	-	-	-	-	-	-			
CO3	2	2	3	1	-	-	-	-	-	-	-	-			
Average	2	2	3	1	-	-	-	-	-	-	-	-			

Subject: Al	IRCRA	FT PE	RFORM	MANC	Е		Sul	bject (Code:	17AF	E63					
						Cours	se Out	tcome	\$S							
CO1	Und	erstar	d the	aircra	ıft per	forma	ince ir	n stea	dy una	accele	rated	and a	cceler	ated fl	ight.	
CO2	Und	erstar	d the	airpla	ine pe	rform	ance	param	neters							
CO3	Acqu	quire the knowledge on aircraft maneuver performance.														
		CO-PO-PSO Mapping														
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	2	2	-	-	-	1	-	-	1				
CO2	3	3	-	2	2	-	-	-	1	-	-	1				
CO3	3	3	-	2	2	-	-	-	1	-	-	1				
Average	3	3	-	2	2	-	-	-	1	-	-	1				

Subject: EX	KPERI	MENT	AL STI	RESS A	NALY	SIS	Sul	bject (Code:	17AF	E651					
						Cours	se Out	tcome	\$S							
CO1	Und	erstan	d the	basics	of me	easure	ments	•								
CO2	Stud	y abo	ut the	electr	ical re	sistan	ce stra	ain ga	uges.							
CO3	Acqu	uire th	e kno	wledg	e of N	IDT.										
	CO-PO-PSO Mapping															
COs		POs PSOs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	1	-	-	-	-	-	-	-	-				
CO2	2	2	3	1	-	-	-	-	-	-	-	-				
CO3	2	2	3	1	-	-	-	-	-	-	-	-				
Average	2	2	3	1	-	-	-	-	-	-	-	-				

Subject: M	AINTE	ENANC	CE, OV	ERHA	UL &		Su	bject	Code:	17AF	E 664				
REPAIR OF	AIRCH	RAFT S	SYSTE	MS											
						Cour	se Ou	tcome	es						
CO1	Com	Comprehend the fundamentals of maintenance and certification.													
CO2	Acqu	Acquire the knowledge of documentation for maintenance.													
CO3	Und	erstan	d the	Aircra	ft Ma	intena	ance, s	afety	and tr	ouble	shoot	ing.			
					C	O-PO	-PSO	Mapp	ing						
COs						Р	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO1	3	3	-	2	2	-	-	-	1	-	-	1			
CO2	3	3	-	2	2	-	-	-	1	-	-	1			
CO3	3	3	-	2	2	-	-	-	1	-	-	1			
Average	3	3	-	2	2	-	-	-	1	-	-	1			
Subject: Al	IRCRA	FT ST	RUCTU	URES I	LAB		Su	bject	Code:	17AI	EL66				
						Cours	se Ou	tcome	s						
CO1	Lear	earn about the simply supported beam, cantilever beam.													
CO2	Und	Jnderstand the Maxwell's theorem and Poisson ration.													
CO3	Acqu	ire th	e kno	wledg	ge abo	ut bu	ckling	load,	shear	failur	e and	shear	cente	er.	
	-				C	D-PO-	PSO	Mapp	ing						
COs		-	-			P	Os				-			PSOs	-
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	-			
CO2	2	2	3	1	-	-	-	-	-	-	-	-			
CO3	2	2	3	1	-	-	-	-	-	-	-	-			
Average	2	2	3	1	-	-	-	-	-	-	-	-			

Subject: Al	IRCRA	FT PR	OPULS	SION I	LAB		Sul	bject (Code:	17AI	E L67					
						Cours	e Out	tcome	s							
CO1	Und	erstar	nd hov	v to d	o the	heat t	ransfe	er								
CO2	Com	prehe	end th	e caso	ade t	esting	of axi	ial cor	npres	sor an	d axia	l turb	ine bla	ade ro	w.	
CO3	Stud	ly the	perfo	rmano	e of p	ropell	ler an	d jet e	engine	es.						
		CO-PO-PSO Mapping														
COs		POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	2	2	-	-	-	1	-	-	1				
CO2	3	3	-	2	2	-	-	-	1	-	-	1				
CO3	3	3	-	2	2	-	-	-	1	-	-	1				
Average	3	3	-	2	2	-	-	-	1	-	-	1				

Subject	: Project Work Phase - 1	Subject Code: 17AEP68										
	Course Ou	tcomes										
CO1	Identify and interpret the realistic mecha	nical engineering problems and	related									
	systems.											
CO2	Apply the basic principles and concepts of mechanical engineering in real world											
	systems based on professional ethics an	d responsibilities.										
CO3	Criticize and experiment to achieve optin	num solutions for mechanical er	Igineering									
	problems.											
CO4	Analyze, evaluate and review the obtaine	d solution for problems in mech	anical									
	engineering systems.											
CO5	Demonstrate professionalism with ethics	s; present effective communicat	ion skills and									
	relate engineering issues to broader soci	etal context.										
	CO-PO-PSO	Mapping										
COs	POs		PSOs									

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				1	2	2	-	3	3	1	2			
CO2	3	1			2	1	-	1	3	3	1	3			
CO3	3	2	2	2	2	2	1		3	3	1	2			
CO4	3	2	2	2	2	2	1		3	3	1	2			
CO5						1		3	3	3		1			
Average	2.5	2.33	2.33	2	1.75	2	2	2.5	3	3	1.6	2.6			

Semester-VII/VIII

Subject: Co	ONTRO)L ENG	GINEEF	RING			Sul	bject	Code	: 17AE	71				
					(Course	e Out	tcome	s						
CO1	Appl	y the c	concep	ots of c	ontro	syster	ns.								
CO2	Redu	ice the	e block	diagr	ams ar	nd sign	al flov	w grap	hs.						
CO3	Dete	rmine	the fr	equen	cy res	ponse	analy	sis by ι	using v	various	s types	s of plo	ots.		
	CO-PO-PSO Mapping														
COs						PC)s							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	-	-	-	-	-	-	2	-			
CO2	2	2	3	-	-	-	-	-	-	-	2	-			
CO3	2	2	3	-	-	-	-	-	-	-	2	-			
Average	2	2	3	-	-	-	-	-	-	-	2	-			

Subject: Co	OMPU	TATIO	NAL FI	LUID D	YNAN	1ICS	Sul	bject	Code	: 17AE	72				
					(Cours	e Out	tcome	S						
CO1	Diffe	rentia	te the	FDM,	FVM a	nd FEI	N								
CO2	Perfo	orm th	e flow	, struc	tural a	and the	ermal	analys	is.						
CO3	Utiliz	e the	discre	tizatio	n metl	hods a	ccord	ing to	the ap	plicati	on.				
CO-PO-PSO Mapping															
COs	CO-PO-PSO Mapping POs PSOs														
	1	2	З	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	2	2	-	-	-	1	-	-	1			
CO2	3	3	-	2	2	-	-	-	1	-	-	1			
CO3	3	3	-	2	2	-	-	-	1	_	-	1			
Average	3	3	-	2	2	-	-	-	1	-	-	1			

Subject: A	IRCRA	FT STA	BILITY	AND	CONTI	ROL	Su	bject	Code	: 17AE	73				
						Cours	e Ou	tcome	es						
CO1	O1 Apply the basic concepts of aircraft stability and control.														
CO2	Differentiate the static longitudinal and static directional stability														
CO3	Estin	nate tl	ne dyn	amic c	derivat	tives.									
					CO	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

Principal

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

CO1	2	2	3	-	2	-	-	-	-	-	-	-		
CO2	2	2	3	-	2	-	-	-	-	-	-	-		
CO3	2	2	3	-	2	-	-	-	-	-	-	-		
Average	2	2	3	-	2	-	-	-	-	-	-	-		

Subject: H	ELICO	PTER D	YNAN	1ICS			Sul	bject	Code	: 17AE	743				
					(Cours	e Out	tcome	es						
CO1	Appl	y the b	basic c	oncep	ts of h	elicop	ter dy	namic	s.						
CO2	Com	pute t	he crit	ical sp	eed by	y using	g vario	us me	thods.						
CO3	Distinguish the turborotor system stability by using transfer matrix and finite element formulation.														
	formulation. CO-PO-PSO Mapping														
	CO-PO-PSO Mapping														
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	2	1	-	-	-	-	-	-	1			
CO2	2	2	-	2	1	-	-	-	-	-	-	1			
CO3	2	2	-	2	1	-	-	-	-	-	-	1			
Average	2	2	-	2	1	-	-	-	-	-	-	1			

Subject: O	PERAT	IONS	RESEA	RCH					Sub	ject C	ode:	17AE7	51		
					(Cours	e Out	tcome	es						
CO1	Apply	y the k	oasic o	f oper	ations	resea	rch.								
CO2	Class	ify the	PERT	-CPM	techni	ques,	queuii	ng the	ory an	d gam	e theo	ory.			
CO3	Identify the sequencing techniques.														
	CO-PO-PSO Mapping														
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	3	-	-	-	2	-	-	2			
CO2	-	2	-	2	3	-	-	-	2	-	-	2			
CO3	-	2	-	2	3	-	-	-	2	-	-	2			
Average	-	2	_	2	3	-	-	-	2	-	-	2			

Subject: FI	IGHT	SIMUL	ATION	I LAB			Su	bject	Code	: 17AE	L76					
					(Cours	e Ou	tcome	es							
CO1	Plot	the ro	ot locu	is and	bode	plot										
CO2	Calcu	ulate t	he dyr	amics	respo	nse of	faircra	aft.								
CO3	Use (compu	itation	al too	ls to m	nodel a	aircraf	t traje	ctory							
	CO-PO-PSO Mapping															
COs		CO-PO-PSO Mapping POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	1	-	-	-	-	-	-	-	-				
CO2	2	2	3	1	-	-	-	-	-	-	-	-				
CO3	2	2	3	1	-	-	-	_	-	-	-	-				
Average	2	2	3	1	-	-	-	-	-	-	-	-				

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: N	10DELI	ING &	ANAL	/SIS L/	٨B		Sul	bject	Code	: 17AE	L77				
					(Cours	e Out	tcome	es						
CO1	Draw	/ the g	eomet	tric mo	odels c	of sym	metrio	:, caml	pered	aero f	oil, no	zzle, w	ing an	d othe	r
	struc	tures.													
CO2	Appl	y diffe	rent ty	/pes o	f mesh	ning.									
CO3	Perform the flow and stress analysis.														
	CO-PO-PSO Mapping														
COs						PC	Ds							PSOs	
	1	2	З	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	-			
CO2	2	2	3	1	-	-	-	-	-	-	-	-			
CO3	2	2	3	1	-	-	-	_	-	-	-	-			
Average	2	2	3	1	-	-	-	-	-	-	-	-			

Subject: A	VIONI	CS					Su	bject	Code	: 17AE	81				
					(Cours	e Ou	tcome	es						
CO1	Selec	ct the s	suitabl	le data	a bus b	ased o	on the	applic	ation.						
CO2	Iden	tify the	e suita	ble na	vigatio	on syst	tems.								
CO3	Disti	nguish	the a	vionics	s syste	m arcl	hitectu	ure.							
	CO-PO-PSO Mapping														
COs	CO-PO-PSO Mapping POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	1			
CO2	2	1	-	-	-	-	-	-	-	-	-	1			
CO3	2	1	-	-	-	-	-	-	-	-	-	1			
Average	2	1	-	-	-	-	-	-	-	-	-	1			

Subject: FI	IGHT	VEHIC	LE DES	IGN			Sul	bject	Code	: 17AE	82				
					(Cours	e Ou	tcome	es						
CO1	Calcu	ulate t	he thr	ust to	weigh	t ratio	and w	ving lo	ading.						
CO2	Com	pute t	he flig	ht veh	icle pe	erform	ance.								
CO3	Selec	t the s	subsys	tems a	as per	vehicl	e desi	gn.							
	CO-PO-PSO Mapping														
COs						PC	Ds							PSOs	
	1	2	З	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	2	-	-	-	-	-	-	2			
CO2	3	2	2	2	2	-	-	-	-	-	-	2			
CO3	3	2	2	2	2	-	-	-	-	-	-	2			
Average	3	2	2	2	2	-	-	-	-	-	-	2			

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE

Subject: FLIGHT TESTING								Subject Code: 17AE831								
Course Outcomes																
CO1	Meas	sure tł	ne fligł	nt para	ametei	rs.										
CO2	Estimate the performance of flight.															
CO3	Apply the FAR regulations.															
CO-PO-PSO Mapping																
COs	POs											PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	1	-	-	-	-	-	-	-	-	-	1				
CO2	2	1	-	-	-	-	-	-	-	-	-	1				
CO3	2	1	-	-	-	-	-	-	-	-	-	1				
Average	2	1	-	-	-	-	-	-	-	-	-	1				

Principal SHREE DEVI INSTITUTE OF TECHNOLOGY MANGALORE