

SHREE DEVI INSTITUTE OF TECHNOLOGY

(Affiliated to Visvesvaraya Technological University & Recognized by AICTE) AIRPORT ROAD, KENJAR, MANGALORE – 574 142

Phone: 0824 – 2254104 Website: www.sdc.ac.in, E-mail : sdit kenjar@rediffmail.com

Department of Mechanical Engineering

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2019-23

Semester-III/IV

Semester-III

Subject: Er	Subject: Engineering Mathematics – III										Subje	ct Co	de: 17	MAT31	
						Cours	se Ou	tcom	es						
CO1	Use	Laplac	e tran	sform	and in	verse	Laplac	ce trar	nsform	in sol	ving di	fferen	tial/ in	tegral	
	equa	ition a	rising	in netv	work a	inalysi	s, con	trol sy	stems	and of	ther fi	elds of	engin	eering.	
CO2	Dem	onstra	ite Fou	urier se	eries t	o stud	y the l	behav	ior of _l	period	ic func	tions a	and the	eir	
	appli	icatior	is in sy	stem	comm	unicat	ions, d	digital	signal	proce	ssing a	nd fie	ld theo	ory.	
CO3	Mak	e use o	of Fou	rier tra	ansfor	m and	Z-trar	nsform	n to illu	ustrate	discre	ete/co	ntinuo	us funo	ction
	arisiı	ng in w	ave a	nd hea	at prop	pagatio	on, sig	nals a	nd sys	tems.					
CO4	Solve	e first a	and se	cond o	order o	ordina	ry diff	erenti	al equ	ations	arisin	g in en	gineer	ing	
	prob	lems ι	using s	ingle s	step ar	nd mu	ltistep	nume	erical n	nethoo	ds.				
CO5	Dete	rmine	the ex	kterna	ls of fu	unctio	nals us	sing ca	lculus	of var	iation	s and s	olve p	roblem	าร
	arisiı	ng in d	ynami	cs of r	igid bo	odies a	and vil	oratio	nal ana	alysis.					
					CC)-PO-	PSO	Map	ping						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	-	-	-	-	-	2			
CO2	3	3	-	3	3	-	-	-	-	-	-	2			
CO3	3	3	-	3	3	-	-	-	-	-	-	2			
CO4	3 3 - 3 3 2														
CO5	3	3	-	3	3	-	-	-	-	-	-	2			
Average	3	3	-	3	3	-	-	-	-	-	-	2			

Subject: M	aterials Science	Subject Code: 17ME32
	Course	Outcomes
CO1	The foundation for understanding the	e structure and various modes of failure in materials
	common in mechanical engineering.	Koper

CO2	Topics are designed to explore the mechanical properties of metals and their alloys, polymers, ceramics ,smart materials and composites.														
CO3	The r	neans	of mo	difying	g such	prope	rties, a	is well	as the	proce	ssing a	and fai	lure of	mater	ials.
CO4	Concepts of use of materials for various applications are highlighted.														
	CO-PO-PSO Mapping														
COs	POS PSOS														
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3	3	-	3	3	-	2	-	3	-	2	2			
CO2	3	3	-	3	3	-	2	-	3	-	2	2			
CO3	3	3	-	3	3	-	2	-	3	-	2	2			
CO4	3	3	-	3	3	-	2	-	3	-	2	2			
Average	3	3	-	3	3	-	2	-	3	-	2	2			

Subject: Ba	asic The			Sul	bject	Code	: 17ME	33								
					(Cours	e Ou	tcome	es							
CO1	Learr	า abou	t therr	nodyn	amic s	ystem	s and	bound	aries.							
CO2	Stud	y the b	asic la	ws of	therm	odyna	mics ir	ncludin	ig, con	servat	ion of	mass,	conser	vation	of	
	ener	gy or f	irst lav	v , seco	ond lav	w and	Zeroth	law.								
CO3	Unde	erstand	d vario	us for	ns of e	energy	incluc	ling he	at trai	nsfer a	nd wo	rk.				
CO4	Ident	tify vai	rious t	ypes o	f prop	erties	(e.g., e	xtensi	ve and	l inten	sive pr	roperti	es)			
CO5	Use t	ables,	equat	ions, a	nd cha	arts, in	evalu	ation o	of ther	modyı	namic	proper	ties			
CO6	Appl	Apply conservation of mass, first law, and second law in thermodynamic analysis of														
	syste	systems (e.g., turbines, pumps, compressors, heat exchangers, etc.)														
CO7	Enha	Enhance their problem-solving skills in thermal engineering														
					CC	D-PO-	PSO	Mapp	ing							
COs						PC	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	-	-	-	2				
CO2	3	3	3	3	3	-	-	-	-	-	-	2				
CO3	3	3	3	3	3	-	-	-	-	-	-	2				
CO4	3	3	3	3	3	-	-	-	-	-	-	2				
CO5	3	3	3	3	3	-	-	-	-	-	-	2				
CO6	3 3 3 3 3 2															
CO7	3	3	3	3	3	-	-	-	-	-	-	2				
Average	3	3	3	3	3	-	-	-	-	-	-	2				

Subject: N	IECHANICS OF MATERIALS	Subject Code: 17ME34
	Course	Outcomes
CO1	Classify the stresses into various cates compute stress and strain intensities sections and temperature changes.	gories and define elastic properties of materials and caused by applied loads in simple and compound

Hopes

CO2	Derive the equations for principal stress and maximum in-plane shear stress and calculate														
	their	magn	itude a	and dir	rection	. Draw	v Mohi	r circle	for pla	ane sti	ess sy	stem a	nd int	erpret	this
	circle	e.													
CO3	Com	prehe	nd the	comp	lexitie	s invo	lved d	uring o	develo	pmen	t of fli	ght vel	hicles.		
CO4	Dete diagr	rmine ams, c	the sh lescrib	ear foi e beha	rce, be aviour	nding of bea	mome ims un	ent and der lat	l draw teral lo	shear bads.	force	and be	ending	mome	nt
CO5	Expla indu	Explain the structural behaviour of members subjected to torque, calculate twist and stress induced in shafts subjected to bending and torsion.													
CO6	Unde	Understand the concept of stability and derive crippling loads for columns.													
CO7	Understand the concept of strain energy and compute strain energy for applied loads.														
			CO-PO-PSO Mapping												
	POs PSOs														
COs						P	Os		Ŭ					PSOs	
COs	1	2	3	4	5	P(6	Os 7	8	9	10	11	12	1	PSOs 2	3
COs CO1	1 3	2 3	3 3	4 3	5 3	P(6 -	Os 7 -	8	9	10 -	-	12 2	1	PSOs 2	3
COs CO1 CO2	1 3 3	2 3 3	3 3	4 3 3	5 3 3	P(6 - -	Os 7 - -	8 - -	9 -	10 - -	11 - -	12 2 2	1	PSOs 2	3
COs CO1 CO2 CO3	1 3 3 3	2 3 3 3	3 3 3 3	4 3 3 3	5 3 3 3	P(6 - - -	Os 7 - -	8 - - -	9 - - -	10 - -	11 - -	12 2 2 2	1	PSOs 2	3
COs CO1 CO2 CO3 CO4	1 3 3 3 3	2 3 3 3 3	3 3 3 3 3	4 3 3 3 3	5 3 3 3 3	P(6 - - - -	Os 7 - - -	8 - - - -	9 - - - -	10 - - -	11 - - -	12 2 2 2 2	1	PSOs 2	3
COs CO1 CO2 CO3 CO4 CO5	1 3 3 3 3 3 3	2 3 3 3 3 3 3	3 3 3 3 3 3 3	4 3 3 3 3 3 3	5 3 3 3 3 3 3	P(6 - - - -	Os 7 - - - - -	8 - - - - -	9 - - - - -	10 - - - -	11 - - - -	12 2 2 2 2 2 2	1	PSOs 2	3
COs CO1 CO2 CO3 CO4 CO5 CO6	1 3 3 3 3 3 3 3 3	2 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	4 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3	P(6 - - - - - -	Os 7 - - - - - -	8 - - - - - -	9 - - - - - -	10 - - - - -	11 - - - - -	12 2 2 2 2 2 2 2 2 2	1	PSOs 2	3
COs CO1 CO2 CO3 CO4 CO5 CO6 CO7	1 3 3 3 3 3 3 3 3 3 3	2 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3	4 3 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3 3	P(6 - - - - - - -	Ds 7 - - - - - - - -	8 - - - - - - -	9 - - - - - - - -	10 - - - - - - - -	11 - - - - - - -	12 2 2 2 2 2 2 2 2 2 2 2	1	PSOs 2	3

Subject: N	1ETAL	CAST	ING A	ND W	/ELDII	bject (Code	: 17M	E35A						
					(Cours	e Out	tcome	S						
CO1	CO1 To provide detailed information about the moulding processes.														
CO2	CO2 To provide knowledge of various casting process in manufacturing.														
CO3	3 To impart knowledge of various joining process used in manufacturing.														
CO4 To provide adequate knowledge of quality test methods conducted on welded and casted															
	components.														
					CC)-PO-	PSO 2	Mapp	ing						
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	3	-	-	-	-	-		1			
CO2	3	3	2	3	3	-	-	-	-	-		1			
CO3	3	3	2	3	3	-	-	-	-	-		1			
CO4	3	3	2	3	3	-	-	-	-	-		1			
Average	3	3	2	3	3	-	-	-	-	-		1			

Subject: C	OMPUTER AIDED MACHINE DRAWING	Subject Code: 17ME36A
	Course Outcomes	
CO1	To acquire the knowledge of CAD software and its for	eatures.

CO2	To inculcate understanding of the theory of projection and make drawings using orthographic projections and sectional views														
CO3	To fa	miliari	ize the	stude	nts wi	th Indi	an Sta	ndard	s on dr	awing	practi	ices.			
CO4	To impart knowledge of thread forms, fasteners, keys, joints and couplings.														
CO5	To make the students understand and interpret drawings of machine components so as to prepare assembly drawings either manually and using CAD packages.														
CO6	To acquire the knowledge of limits, tolerances and fits pertaining to machine drawings.														
	CO-PO-PSO Mapping														
COs	POs PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2	-	-	-	I	-	2				
CO2	3	3	3	3	2	-	-	-	-	-	2				
CO3	3	3	3	3	2	-	-	-	-	-	2				
CO4	3	3	3	3	2	-	-	-	-	-	2				
CO5	3	3	3	3	2	-	-	-	-	-	2				
CO6	3	3	3	3	2	-	-	-	-	-	2				
Average	3	3	3	3	2	-	-	-	-	-	2				

Subject: N	1ATER	IALS '	TESTII	NG LA	В		Sul	bject	Code	: 17M	EL37A				
					(Cours	e Out	tcome	es						
CO1	To le	arn th	e conc	ept of	the pr	eparat	ion of	sampl	es to p	perfor	n char	acteriz	ation	such as	5
	micro	ostruct	ture, v	olume	fraction	on of p	hases	and gi	rain siz	e.					
CO2	To ur stand	ndersta dard te	and me ests.	echani	cal be	haviou	ir of va	rious	engine	ering	materi	als by	condu	cting	
CO3	To learn material failure modes and the different loads causing failure.														
CO4	To learn the concepts of improving the mechanical properties of materials by different														
	meth	nods lil	ke hea	t treat	ment,	surfac	e trea	tment	etc.						
					CC	D-PO-	PSO	Mapp	ing						
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-					
CO2	3	3	3	3	3	-	-	-	-	-					
CO3	3	3	3	3	3	-	-	-	-	-					
CO4	3	3	3	3	3	-	-	-	-	-					
Average	3	3	3	3	3	-	-	-	-	-					

Semester-IV

Subject	: KINEMATICS OF MACHINES	Subject Code: 17ME43
	Cours	se Outcomes
CO1	Familiarize with mechanisms and mo	otion analysis of mechanisms.
		40port)

CO2	Unde	erstand	d meth	ods of	mech	anism	motio	n anal	ysis ar	d thei	r chara	acteris	tics.			
CO3	Analy	yse mo	otion o	f plana	ar mec	hanisr	ns, gea	ars, ge	ar traiı	ns and	cams.					
	CO-PO-PSO Mapping															
COs	POs PSOs															
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	-	-	-	-	-	3	3	3	-	-	-	1				
CO2	-	-	-	-	-	3	3	3	-	-	-	1				
CO3	-	-	-	-	-	3	3	3	-	-	-	1				
Average	-	-	-	-	-	3	3	3	-	-	-	1				

Subject: C	OMPLEX	ANA	_YSIS,	PROE	ABILI	TΥ	Sub	ject	Code	: 17N	1AT41					
AND STATIS	STICAL N	1ETHC	DDS													
					(Cour	se Oı	utcon	nes							
CO1	Use the	e cono	cepts	ofana	alytic f	functi	on an	d con	nplex	poten	tials t	o solve	e the I	proble	ems	
	arising	in ele	ctrom	nagne	tic fie	ld the	ory.									
CO2	Utilize	confo	rmal	transf	orma	tion a	nd co	mplex	k inte	gral ar	ising i	n aerc	o foil t	heory	, fluid	
	flow vi	sualiz	ation	and ir	nage	proce	ssing.									
CO3	Apply discrete and continuous probability distributions in analyzing the probability models arising in angineering field															
	models arising in engineering field.															
CO4	Make use of the correlation and regression analysis to fit a suitable mathematical model														del	
	for the statistical data.															
CO5	Constr	uct jo	int pro	obabi	lity dis	stribu	tions	and d	emor	nstrate	e the v	alidity	of te	sting	the	
	hypoth	nesis.														
					CC	D-PO	-PSO) Map	ping					-		
COs							POs								PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	3	I	-	-	-	-	-					
CO2	3	3	-	3	3	I	-	-	-	-	-					
CO3	3	3	-	3	3	I	-	-	-	-	-					
CO4	3	3	-	3	3	-	-	-	-	-	-					
CO5	3	3	-	3	3	-	-	-	-	-	-					
Average	3	3	-	3	3	-	-	-	-	-	-					

Subject: A	pplied Thermodynamics	Subject Code: 17ME42
	Course	Outcomes
CO1	To have a working knowledge of basic	c performance of Gas power cycles.
CO2	To determine performance paramete	rs of refrigeration and air-conditioning systems.
CO3	Evaluate the performance parameter receiver pressure.	s of reciprocating air compressor as a function of
CO4	To Calculate the forces exerted by a f force of buoyancy	uid at rest on submerged surfaces and understand the

CO5	To ur Engir	nderst neering	and an g appli	d eval cation	uate t s	he per	forma	nce of	steam	powe	r cycle	s their	variou	JS	
CO6	To kr	now ho	ow fue	lburn	s and t	heir th	nermo	dynam	ic pro	perties	5.				
CO7	To Understand mechanism of power transfer through belt, rope, chain and gear drives in I C Engines														
					CC	D-PO-	PSO	Mapp	ing						
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-		-	3				
CO2	3	3	3	3	3	-	-	-		-	3				
CO3	3	3	3	3	3	-	-	-		-	3				
CO4	3	3	3	3	3	-	-	-		-	3				
CO5	3	3	3	3	3	-	-	-		-	3				
CO6	3	3	3	3	3	-	-	-		-	3				
CO7	3	3	3	3	3	-	-	-		-	3				
Average	3	3	3	3	3	-	-	-		-	3				

Subject	: Fluid Me	echani	CS				Sul	bject (Code	: 17MI	E44				
					(Cours	e Ou	tcome	S						
CO1	To ha conti	ave a v nuum	vorkin appro	g knov ximati	vledge on.	of the	basic	prope	rties o	f fluids	s and u	Inders	tand t	he	
CO2	To Ca force	alculat of bu	e the f oyancy	orces (/	exerte	d by a	fluid a	it rest	on sub	merge	ed surf	aces a	nd und	derstan	d the
CO3	To ur appli	ndersta cation	and th s	e flow	chara	cteristi	c and	dynan	nics of	flow fi	ield fo	r vario	us Eng	gineerir	ng
CO4	To kr torqu impo	To know how velocity changes and energy transfers in fluid flows are related to forces and torques and to understand why designing for minimum loss of energy in fluid flows is so important.													
CO5	To di	important.To discuss the main properties of laminar and turbulent pipe flow and appreciate their differences and the concept of boundary layer theory.													
	airre	rences	and tr	ne con	cept o	rboun	dary i	ayertn	eory.						
CO6	Unde	erstances	d the c	oncept	t of dy	namic	dary ia	rity an	d how	to ap	ply it t	o expe	rimen	tal	
CO6 CO7	Unde mode To ap of fri	erstances erstance eling oprecia ction a	d the c ate the	oncept conse	t of dy quenc	namic es of c	simila	rity an essibili	d how ty in g	to ap as flov	ply it to v and u	o expe unders	rimen tand t	tal he effe	ects
CO6 CO7	Unde mode To ap of fri	erstances erstance eling oprecia ction a	d the c ate the and hea	oncept conse at tran	t of dy quenc sfer o C(namic es of c n comp)-PO-	simila ompro pressik	rity an essibili ple flov Mapp	d how ty in g vs	' to ap as flov	ply it to v and u	o expe unders	rimen tand t	tal he effe	ects
CO6 CO7 COs	Unde mode To ap of fri	erstances eling oprecia ction a	d the contract the the the the the the the the the th	oncept conse at tran	t of dy quenc sfer of C(namic es of c <u>n comp</u> D-PO- PC	simila compro pressil PSO Ds	rity an essibili ble flov Mapp	d how ty in g vs ing	to ap as flov	ply it to v and u	o expe Inders	rimen tand t	tal he effe PSOs	ects
CO6 CO7 COs	Unde mode To ap of fri	erstance erstance eling oprecia ction a	d the c ate the and hea	oncept conse at tran	t of dy quenc isfer of C(namic res of c n comp D-PO- PC 6	simila compre pressil PSO Ds 7	rity an essibili ble flov Mapp	d how ty in g vs ing 9	to ap as flov	ply it to v and u	o expe unders	rimen tand t	tal he effe PSOs 2	ects
CO6 CO7 COs CO1	Unde mode To ap of fri	erstance erstance eling oprecia ction a 2 3	d the c ate the and he 3 3	oncept conse at tran	t of dy equences isfer of CC 5 3	namic es of c n comp D-PO- PC 6 -	simila ompro pressil PSO Ds 7 2	rity an rity an essibili ble flov Mapp 8 8	d how ty in g vs ing 9 3	to approved as flow	ply it to v and u 11	o expe unders 12	rimen tand t	tal he effe PSOs 2	acts
CO6 CO7 COs <u>CO1</u> CO2	Unde mode To ap of fri 1 3 3	rences erstance eling oprecia ction a 2 3 3	and the cand here and	oncept conse at tran	t of dy quenc isfer of C(5 3 3	namic es of c n comp)-PO- PC 6 -	simila compressil PSO Ds 7 2 2	rity an essibili ble flov Mapp 8 -	d how ty in g vs ing 9 3 3	to ap as flov 10 - -	ply it to v and u 11	o expe unders 12	rimen tand t	tal he effe PSOs 2	acts
CO6 CO7 COs CO1 CO2 CO3	Unde mode To ap of fri 1 3 3 3 3	erstance erstance eling oprecia ction a 2 3 3 3	and the cand the and here and	oncept conse at tran 4 3 3 3	t of dy equences asfer of CC 5 3 3 3 3	namic es of c n comp D-PO- PC 6 - - -	simila compressil PSO Ds 7 2 2 2 2	rity an essibili ble flov Mapp 8 - - -	d how ty in g vs ing 9 3 3 3	10 ap as flov	ply it to v and u 11	o expe unders	rimen tand t	tal he effe PSOs 2	acts
CO6 CO7 COs CO1 CO2 CO3 CO4	Unde mode To ap of fri 1 3 3 3 3 3	erstance eling oprecia ction a 3 3 3 3 3	and the contract of the contra	a conse a conse a tran	t of dy equences isfer of CC 5 3 3 3 3 3 3	namic res of c n comp D-PO- PO- PC 6 - - - - -	ompropressil PSO Ds 2 2 2 2 2 2	rity an essibili ble flov Mapp 8 - - - -	d how ty in g vs ing 9 3 3 3 3 3	10 ap as flov 10 - - - -	ply it tr v and u 11	o expe unders	rimen tand t	tal he effe PSOs 2	3
CO6 CO7 COs CO1 CO2 CO3 CO4 CO5	Unde mode To ap of fri 1 3 3 3 3 3 3 3	erstance erstance oprecia ction a 2 3 3 3 3 3 3 3	and the cand here and	a conse at tran 4 3 3 3 3 3 3	t of dy equences asfer of CC 5 3 3 3 3 3 3 3 3 3	namic es of c n comp D-PO- PC 6 - - - - - - -	simila compressil PSO Ds 7 2 2 2 2 2 2 2 2	rity an rity an essibili ble flov Mapp 8 - - - - - - - -	d how ty in g vs ing 3 3 3 3 3 3 3	10 ap as flov 10 - - - - - -	ply it to v and u 11	o expe	rimen tand t	tal he effe PSOs 2	acts

CO7	3	3	3	3	3	_	2	-	3	-			
Average	3	3	3	3	3	I	2	-	3	I			

Subject: M	echanio	cal Mea	surem	ents an	d Metro	ology	Sul	bject	Code	: 17M	EL47B					
					(Cours	e Out	tcome	es							
CO1	To ill	To illustrate the theoretical concepts taught in Mechanical Measurements & Metrology														
	through experiments.															
CO2	To illustrate the use of various measuring tools measuring techniques.															
CO3	To ur	To understand calibration techniques of various measuring devices.														
					CC)-PO-	PSO	Mapp	ing							
COs						PO	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	2	2	3	-	-	-		-		1				
CO2	2	3	2	2	3	-	-	-		-		1				
CO3	2	3	2	2	3	-	-	_		-		1				
Average	2	3	2	2	3	-	-	-		-		1				

Subject: N	1EASUI	REME	NTS AN	ND ME	TROLO)GY LA	٨B		S	ubjec	t Cod	le: 171	MEL48	В	
					(Cours	e Out	tcome	s						
CO1	To illustrate the theoretical concepts taught in Mechanical Measurements & Metrology														y
	through experiments.														
CO2	To ill	To illustrate the use of various measuring tools measuring techniques.													
CO3	To ur	nderst	and ca	librati	on tec	hnique	es of va	arious	measu	iring d	evices	•			
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	3	-	-	-		-	3				
CO2	2	2	2	2	3	-	-	-		-	3				
CO3	2	2	2	2	3	-	-	-		-	3				
Average	2	2	2	2	3	-	-	-		-	3				

Subject: M	achine Tools and Operations	Subject Code: 17ME45B
	Course Outcomes	
CO1	To introduce students to different machine tools in o different shapes and sizes.	order to produce components having

Hopes

CO2	To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools. To develop the knowledge on mechanics of machining process and effect of various														
CO3	To develop the knowledge on mechanics of machining process and effect of various parameters on economics of machining.														
					CC)-PO-	PSO]	Mapp	ing						
COs						PO	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	2	-	2	2			
CO2	3	3	3	3	3	-	-	-	2	-	2	2			
CO3	3	3	3	3	3	-	-	-	2	-	2	2			
Average	3	3	3	3	3	-	-	-	2	-	2	2			

Subject: M	lechani	cal Mea	surem	ents an	d Metr	ology			S	ubjec	t Cod	le: 171	ME46B	}		
						Cours	e Out	tcome	es							
CO1	Unde	erstand	d metr	ology,	its adv	vancer	nents	& mea	suring	instru	ments	?				
CO2	Acqu angu	Acquire knowledge on different standards of length, calibration of End Bars, linear and angular measurements, Screw thread and gear measurement & comparators.														
CO3	Equip	Equip with knowledge of limits, fits, tolerances and gauging.														
CO4	Acqu trans	ire kno ducer:	owledg s, inter	ge of n media	neasur ate mo	ement difying	t syste g and t	ms and ermina	d meth ating c	nods w levices	ith em	phasis	on dif	ferent		
CO5	Unde	erstand	d the n	neasur	ement	t of Fo	rce, To	orque,	Pressu	re, Te	mpera	ture ai	nd Stra	in.		
					CC	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	2	-	2	2				
CO2	3	3	3	3	3	-	-	-	2	-	2	2				
CO3	3	3	3	3	3	-	-	-	2	-	2	2				
CO4	3	3	3	3	3	-	-	-	2	-	2	2				
CO5	3	3	3	3	3	-	-	-	2	-	2	2				
Average	3	3	3	3	3	-	-	-	2	-	2	2				

Semester-V/VI

Subject: M	IANAGEMENT AND	Subject Code: 17ME51							
ENTREPREN	IEURSHIP								
Course Outcomes									
CO1									
	Examine the meaning, importa	nce, nature of management, its difference							
	between management and adr	ninistration and role of managers in							
	management. Describe effectiv	e communication process, its importance,							
	types and purpose for running	an organization.							

CO2	Exar	nine	the m	neanii	ng ch	aract	eristi	cs pri	nciple	es and	d pro	cess c	of org	anizin	g.				
CO3	Expl	ain tł	ne im	porta	nce c	of eng	gineer	ing e	cono	mics,	Law	of der	mand	and					
	supp	oly in	engir	neerir	ng de	cisior	n mak	ing.											
CO4	Dese	cribe	vario	us int	erest	: rate	facto	rs an	d imp	oleme	ent th	e sarr	ne for						
	ecor	nomio	c deci	sion i	makir	າg.													
CO5	Exar	Examine different economic analysis methods-NPW, EAW, IRR, FW for																	
	deci	decision making.																	
CO6	Disc	uss d	iffere	nt co	mpor	nent o	of cos	ts an	d me	thods	s of co	ost es	timat	ion.					
CO7	Expl	ain d	eprec	ciatio	n, difl	feren	t met	hods	of co	mput	ting d	eprec	ciatio	n.					
CO8	Disc	uss ta	axatic	on cor	ncept	s-inco	ome t	ax an	id cor	pora	te tax	æs.							
					CC	D-PO-	PSO	Mapp	ing										
COs		r		1		P	Os		1	1				PSOs					
	1	2	3	4	5	6	7	Q	0	10	11	12	1	2	2				
						-	'	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3											
CO1	3	3	-	-	3	2	-	-	-	-	3	2	-	2	5				
CO1 CO2	3 3	3 3	-	-	3 3	2	-	- -	-	-	3 3	2							
CO1 CO2 CO3	3 3 3	3 3 3	-	-	3 3 3	2 2 2 2	-	- - -		-	3 3 3	2 2 2	-						
CO1 CO2 CO3 CO4	3 3 3 3	3 3 3 3	- - -	- - -	3 3 3 3	2 2 2 2 2	- - -	• - - -	- - - -	- - - -	3 3 3 3	2 2 2 2 2							
CO1 CO2 CO3 CO4 CO5	3 3 3 3 3	3 3 3 3 3	- - - - -	- - - - -	3 3 3 3 3	2 2 2 2 2 2 2	- - - -	- - - -	- - - -	- - - - -	3 3 3 3 3 3	2 2 2 2 2 2 2							
CO1 CO2 CO3 CO4 CO5 CO6	3 3 3 3 3 3 3	3 3 3 3 3 3 3	- - - - -	- - - - -	3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2	- - - - -	0 - - - - - -	- - - - - -	- - - - - -	3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2							
CO1 CO2 CO3 CO4 CO5 CO6 CO7	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	- - - - -	- - - - -	3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2	- - - - - -	0 - - - - - -	9 - - - - - - -	- - - - - - -	3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2							
CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8	3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3	- - - - - -	- - - - - -	3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2	- - - - - - - -	0 - - - - - - - -	9 -	- - - - - - - - -	3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2							

Subject: Er	nergy a	nd Env	ironme	ent							Subj	ect Co	ode: 1	7ME56	52
						Cours	e Out	tcome	es						
CO1	Und	erstar	nd ene	ergy so	enari	o, ene	ergy so	ources	and t	heir u	tilizat	ion			
CO2	Lear anal	n abo ysis	ut me	thods	of en	ergy s	torag	e, ene	rgy m	anage	ement	and e	conor	nic	
CO3	Hav	e proj	per aw	varen	ess ab	out ei	nviron	ment	and e	co sys	stem.				
CO4	Understand the environment pollution along with social issues and acts.														
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2	2	2	-	-	-	-	3	3			
CO2	3	2	3	2	2	2	-	-	-	-	3	3			
CO3	3	2	3	2	2	2	-	-	-	-	3	3			
CO4	3	2	3	2	2	2	-	-	-	-	3	3			
Average	3	2	3	2	2	2	-	-	-	-	3	3			

Hopes

Subject: D	ynamic	s of M	achiner	Ŋ							Subj	ect Co	ode: 1	7ME52)	
					(Cours	e Out	tcome	es							
CO1	To g	ain th	e knov	wledg	e stati	ic and	dyna	mic eo	quilibı	ium c	onditi	ions o	f mecl	nanism	าร	
	subj	ected	forces	and o	couple	e, with	n and	witho	ut fric	tion.						
CO2	Anal	yze tł	ie meo	chanis	ms fo	r stati	ic and	dynai	mic ec	quilibr	ium.					
CO3	To u	nders	tand t	he ba	lancin	g prin	ciples	of ro	tating	and r	ecipro	ocatin	g mas	ses,		
	gove	ernors	and g	yrosc	opes.											
CO4	Anal	yze tł	ie bala	ancing	s of ro	tating	; and r	ecipro	ocatin	g mas	ses, g	overn	ors an	d		
	gyro	scope	s.													
CO5	To u	nders	tand v	vibrati	ons cl	naract	eristi	s of s	ingle	degree	e of fr	eedor	n syst	ems.		
CO6	Char	Characterize the single degree freedom systems subjected to free and forced vibrations with and without damping														
	Characterize the single degree freedom systems subjected to free and forced vibrations with and without damping.															
					CC	D-PO-	PSO	Mapp	ing							
COs						PO	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	-	3	-	-	-	-	-	-	3	2				
CO2	3	3	-	3	-	-	-	-	-	-	3	2				
CO3	3	3	-	3	-	-	-	-	-	-	3	2				
CO4	3	3	-	3	-	-	-	-	-	-	3	2				
CO5	3	3	-	3	-	-	-	-	-	-	3	2				
CO6	3	3	-	3	-	-	-	-	-	-	3	2				
Average	3	3	-	3	-	-	-	-	-	-	3	2				

Subject: T	urbo M	achine	s								Subj	ect Co	ode: 1	7ME53	3
					(Cours	e Out	tcome	es						
CO1	The for e and	cours nergy steam	e aim trans turbi	s at gi forma nes.	ving a ation,	n ove such a	rview as pur	of dif nps, fa	feren ans, co	t type ompre	s of tu essors	irbom , as w	achine ell as l	ery uso nydrau	ed Ilic
CO2	12Explain the working principles of turbomachines and apply it to various types of machines13It will focus on application of turbo machinery in power generation, power														
CO3	machines O3 It will focus on application of turbo machinery in power generation, power absorption and transportation sectors. CO-PO-PSO Mapping														
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	-	-	2	2			
CO2	3	2	2	3	3	-	-	-	-	-	2	2			
CO3	3	2	2	3	3	-	-	-	-	-	2	2			
Average	3	2	2	3	3	-	-	-	-	-	2	2	110		_

Subject: N	on-Tra	ditiona	l Mach	ining							Subj	ect Co	ode: 1	7ME55	54
					(Cours	e Out	tcome	es						
CO1	Unde	erstan	d the c	compa	re trac	ditiona	al and	non-tr	aditio	nal ma	nchinir	ng prod	cess ar	nd	
	reco	gnize t	he ne	ed for	Non-t	raditic	nal m	achini	ng pro	cess.					
CO2	Unde	erstan	d the c	constru	uction	al feat	ures, J	perfor	mance	parar	neters	, proc	ess		
	chara	acteris	tics, a	pplica	tions,	advan	tages	and lin	nitatio	ns of l	JSM, A	AJM ar	nd WJN	И.	
CO3	Ident	tify the	e need	l of Ch	emica	l and e	electro	-chem	nical m	achini	ng pro	ocess a	long v	vith the	5
	cons	tructio	onal fe	atures	, proc	ess pa	ramet	ers, pr	ocess	chara	cterist	ics, ap	plicati	ons,	
	adva	ntage	s and I	imitat	ions.										
CO4	Understand the constructional feature of the equipment, process parameters, process characteristics, applications, advantages and limitations EDM & PAM.														
	characteristics, applications, advantages and limitations EDM & PAM. Understand the LBM equipment, LBM parameters, and characteristics, EBM equipment														
CO5	characteristics, applications, advantages and limitations EDM & PAM.Understand the LBM equipment, LBM parameters, and characteristics. EBM equipment														
	and i	mecha	inism d	of met	al rem	ioval, a	applica	ations,	advar	ntages	and li	mitatio	ons LB	M & EI	3M.
	1				CC)-PO-	PSO	Mapp	ing						
COs		1				PO	Os		1			1		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	3	-	-	2	-			
CO2	3	2	2	3	3	-	-	3	-	-	2	-			
CO3	3	2	2	3	3	-	-	3	-	-	2	-			
CO4	3	2	2	3	3	-	-	3	-	-	2	-			
CO5	3	2	2	3	3	-	-	3	-	-	2	-			
Average	3	2	2	3	3	-	-	3	-	-	2	-			

Subject: D	esign o	f Mach	ine Ele	ments	- 1		Sul	bject	Code	: 17M	E54					
					(Cours	e Out	tcome	es							
CO1	Able	to un	derst	and m	echar	nical d	esign	proce	dure,	mate	rials, o	codes	and u	se of		
	stan	dards														
CO2	Able	to des	sign m	achine	e comp	onent	ts for s	tatic,	impac	t and f	atigue	stren	gth.			
CO3	Able	Able to design fasteners, shafts, joints, couplings, keys, threaded fasteners riveted joints, welded joints and power screws.														
	welded joints and power screws.															
	welded joints and power screws. CO-PO-PSO Mapping															
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	3	3	-	1	-	-	-	3	-				
CO2	3	3	2	3	3	-	1	-	-	-	3	-				
CO3	3	3	2	3	3	-	1	-	-	-	3	-				
Average	3	3	2	3	3	-	1	-	-	-	3	-				

Hopes

Subject: FI	uid Me	chanic	s & Ma	chiner	y Lab		Sul	bject	Code	: 17M	EL57				
					(Cours	e Out	tcome	es						
CO1	This	course	will p	rovide	e a bas	ic und	erstar	iding c	of flow	meas	ureme	ents us	ing va	rious t	ypes
	of flo	w me	asurin	g devi	ces, ca	librati	on an	d losse	es asso	ciated	with	these	device	s.	
CO2	Ener	gy con	versio	n prin	ciples,	analy	sis and	d unde	erstand	ling of	hydra	ulic tu	irbines	and	
	pumps will be discussed. Application of these concepts for these machines will be demonstrated. Performance analysis will be carried out using characteristic curves														
demonstrated. Performance analysis will be carried out using characteristic curves.															
					CC	D-PO-	PSO]	Mapp	ing						
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	-	3	-	-	-	-			
CO2	3	3	-	3	3	-	-	3	-	-	-	-			
Average	3	3	-	3	3	-	-	3	-	-	-	-			

Subject: E	nergy L	ab								Sul	bject	Code:	: 17ME	EL58	
						Cours	e Ou	tcome	es						
CO1	This using	course g vario	e will p us typ	orovide es of r	e a bas neasu	ic und ring de	erstar evices	nding o	of fuel	prope	rties a	nd its	measu	iremer	its
CO2	 Energy conversion principles, analysis and understanding of I C Engines will be discussed. Application of these concepts for these machines will be demonstrated. Performance analysis will be carried out using characteristic curves. Exhaust emissions of I C Engines will be measured and compared with the standards. 														
CO3	O3 Exhaust emissions of I C Engines will be measured and compared with the standards.														
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	2	3	-	-	-	2	-	-	1			
CO2	3	3	-	2	3	-	-	-	2	-	-	1			
CO3	3	3	-	2	3	-	-	-	2	-	-	1			
Average	3	3	-	2	3	-	-	-	2	-	-	1			

Semester-VI

Subject: F	inite Ele	ement	Analysi	is			Su	bject	Code	: 17M	E61			
						Cours	e Ou	tcome	es					
CO1	To le	arn ba	asic pri	inciple	s of fir	nite el	ement	analy	sis pro	cedur	e.			
CO2	To le	arn th	e theo	ory and	d chara	acteris	tics of	finite	eleme	ents th	at rep	resent	engineering	
	structures.													
CO3	To learn and apply finite element solutions to structural, thermal, dynamic problem to													
	deve	lop th	e knov	wledge	e and s	kills n	eeded	to eff	ective	ly eval	uate f	inite e	lement analyses.	
					CC	D-PO-	PSO	Mapp	ing					
COs						P	Os						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1923	

CO1	3	3	-	2	3	-	-	-	2	-	-	1		
CO2	3	3	-	2	3	-	-	-	2	-	-	1		
CO3	3	3	-	2	3	-	-	-	2	-	-	1		
Average	3	3	-	2	3	-	-	-	2	-	-	1		

Subject: In	dustria	l Safet	y				Sul	bject	Code	: 17M	E662				
					(Cours	e Out	tcome	es						
CO1	Stude the v	ents w vorkpl rols.	vill be a ace, ai	able to nd to d	o recog detern	gnize a nine ap	ind ev opropi	aluate riate h	occup azard	ationa contro	al safe ols follo	ty and owing	health the hie	n hazar erarchy	ds in / of
CO2	Students will furthermore be able to analyze the effects of workplace exposures, injuries and illnesses, fatalities and the methods to prevent incidents using the hierarchy of controls, effective safety and health management systems and task priorities														
CO3	and illnesses, fatalities and the methods to prevent incidents using the hierarchy of controls, effective safety and health management systems and task-oriented training.														
					CC)-PO-	PSO	Mapp	ing						
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	-	-	2	2			
CO2	3	2	2	3	3	-	-	-	-	-	2	2			
CO3	3	2	2	3	3	-	-	-	-	-	2	2			
Average	3	2	2	3	3	-	-	-	-	-	2	2			

Subject: C	ompute	er integ	grated I	Manufa	acturin	g	Sul	bject	Code	: 17M	E62				
					(Cours	e Out	tcome	es						
CO1	To in	npart l	knowle	edge o	f CIM	and Au	utoma	tion a	nd diff	ferent	conce	pts of	autom	ation	by
	deve	loping	math	emati	cal mo	dels.									
CO2	To m	ake st	udent	s to ur	ndersta	and th	e Com	puter	Appli	cations	s in De	sign a	nd Ma	nufact	uring
	[CAD	/ CAN	Л) lead	ling to	Comp	outer ii	ntegra	ited							
CO3	syste	ems. Ei	nable 1	them t	o perf	orm va	arious	transf	format	tions o	of entit	ies on	ı displa	y devi	ces.
CO4	To ex	cpose	studer	nts to a	autom	ated fl	low lir	nes, as	sembl	y lines	, Line	Baland	cing Te	chniqu	ies,
	and I	lexibl	e Man	ufactu	uring S	ystem	s.								
CO5	To e>	To expose students to computer aided process planning, material requirement planning,													
	capacity planning etc.														
CO6	To ex	(pose	the stu	udents	to CN	IC Mac	hine T	Fools,	NC pa	rt prog	gramm	ing, a	nd ind	ustrial	
		rot	oots.												
CO7	To in	trodu	ce the	stude	nts to	conce	pts of	Additi	ve Ma	nufact	turing,	Interi	net of ⁻	Things,	and
	Indus	stry 4.	Oleadi	ng to S	Smart	Factor	у.								
					CC	D-PO-	PSO	Mapp	ing						
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	2	1	-	-	-	-	-	-	1			
CO2	3	3	2	2	1	-	-	-	-	-	-	1			
CO3	3	3	2	2	1	-	-	-	-	-	-	1	VO		-
	1		1	1	1	1 1		1		I	1	C	T	The	

CO4	3	3	2	2	1	-	-	-	-	-	-	1		
CO5	3	3	2	2	1	-	-	-	-	-	-	1		
CO6	3	3	2	2	1	-	-	-	-	-	-	1		
CO7	3	3	2	2	1	-	-	-	-	-	-	1		
Average	3	3	2	2	1	-	-	-	-	-	-	1		

Subject: H	eat Tra	nsfer					Sul	bject	Code	: 17M	E63				
					(Cours	e Out	tcome	es						
CO1	Stud	y the r	nodes	of hea	at tran	sfer.									
CO2	Lear prob	n how plems.	ı to fo	rmula	ate an	d solv	e 1-D	steac	ly and	l unst	eady ł	neat c	onduc	ction	
CO3	Appl exte	y emp rnal bo	irical c oundar	orrela y laye	tions f r conv	for full ective	y deve flow j	eloped proble	lamin ms.	ar, tui	bulen	t inter	nal flo	ws and	I
CO4	Stud	y the b	basic p	rincipl	es of l	neat ex	kchan	ger ana	alysis a	and th	ermal	desigr	۱.		
CO5	Understand the principles of boiling and condensation including radiation heat transfer related engineering problems. CO-PO-PSO Mapping														
					CC	D-PO-	PSO 2	Mapp	ing						
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	3	3	-	-	-	1	-	-	1			
CO2	2	2	-	3	3	-	-	-	1	-	-	1			
CO3	2	2	-	3	3	-	-	-	1	-	-	1			
CO4	2	2	-	3	3	-	-	-	1	-	-	1			
CO5	2	2	-	3	3	-	-	-	1	-	-	1			
Average	2	2	-	3	3	-	-	-	1	-	-	1			

Subject: D	esign o	f Mach	ine Ele	ments	-11					Sub	ject C	Code:	17ME6	54	
					(Cours	e Out	tcome	es						
CO1	To u	nderst	and va	arious	eleme	nts inv	volved	l in a n	nechar	nical sy	/stem.				
CO2	To ar them	nalyze n using	variou appro	is forc opriate	es acti e techr	ng on niques	the el , code	ement s, and	ts of a stand	mech ards.	anical	systen	n and o	design	
CO3	To select transmission elements like gears, belts, pulleys, bearings from the manufacturers" catalogue. To design completely a mechanical system integrating machine elements.														
CO4	To design completely a mechanical system integrating machine elements.														
CO5	To design completely a mechanical system integrating machine elements. To produce assembly and working drawings of various mechanical systems involving machine elements like belts, pulleys, gears, springs, bearings, clutches and brakes. CO_PO_PSO_Memoirs														
					U	J-PO-	PSU .	wapp	ing						
COs					1	PC	Os	1	1			1		PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	3	3	-	-	-	-	-	-	1			
CO2	3	2	2	3	3	-	-	-	-	-	-	1			
CO3	3	2	2	3	3	-	-	-	-	-	-	1	YO	pa	~

CO4	3	2	2	3	3	-	_	-	-	-	-	1		
CO5	3	2	2	3	3	-	-	-	-	-	-	1		
Average	3	2	2	3	3	-	-	-	-	-	-	1		

Subject: A	utomol	oile Eng	gineeri	ng						Sul	bject	Code:	: 17ME	655	
					(Cours	e Out	tcome	es						
CO1	Expla	ain the	funda	ment	als of o	operat	ing sy	stem							
CO2	Com	prehe	nd pro	cess n	nanage	ement	, mem	ory m	anage	ment	and st	orage	manag	gement	t.
CO3	Fami	liar wi	th var	ious ty	pes of	fopera	ating s	ystem	S						
CO-PO-PSO Mapping															
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	2	-	2	-	-	-	-	-	1	1			
CO2	-	-	2	-	2	-	-	-	-	-	1	1			
CO3	-	-	2	-	2	-	-	-	-	-	1	1			
Average	-	-	2	-	2	-	-	-	-	-	1	1			

Subject: H	eat Tra	nsfer L	ab				Sul	bject	Code	: 17M	EL67				
					(Cours	e Out	tcome	s						
CO1	The p	orimar	y obje	ctive o	of this	course	e is to	provid	le the	funda	menta	l know	ledge	necess	sary
	to ur	ndersta	and th	e beha	avior o	of ther	mal sy	stems							
CO2	This	course	e provi	des a (detaile	ed exp	erime	ntal ar	alysis	, inclu	ding th	ne app	licatio	n and h	neat
	trans	fer th	rough	solids,	, fluids	, and	vacuui	n. Cor	vectio	on, cor	nductio	on, and	d radia	tion he	eat
	transfer in one and two dimensional steady and unsteady systems are examined.														
					CC	D-PO-	PSO	Mapp	ing						
COs						P	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				3			3	3	3	3			
CO2	3	3				3			3	3	3	3			
Average	3	3				3			3	3	3	3			

Subject: M	odelin	g and A	nalysis	Lab (F	EA)		Sul	bject	Code	: 17M	EL68				
					(Cours	e Out	tcome	s						
CO1	To ac	quire	basic	unders	standi	ng of N	Modeli	ing an	d Anal	ysis so	ftware	9			
CO2	To u the s	nderst tress a	and th and ot	e diffe her re	erent k lated p	kinds o Daram	of anal eters o	ysis an of bars	id app , bean	ly the ns load	basic p ded wi	orincip th loa	les to ding co	find ວເ ກditio	ıt ns.
CO3	To lean to apply the basic principles to carry out dynamic analysis to know the natural frequency of different kind of beams.														
					CC	D-PO-	PSO	Mapp	ing						
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	-	-	-	-	3	-	-	U	to	pa	3

CO2	3	3	3	-	-	-	-	-	3	-	-	-		
CO3	3	3	3	-	-	-	-	-	3	-	-	-		
Average	3	3	3	-	-	-	-	-	3	-	-	-		

Semester-VII/VIII

Subject: Er	nergy l	Engine	ering				Sul	bject	Code	: 17M	E71				
					(Cours	e Out	tcome	s						
CO1	Unde	erstan	d ener	gy sce	nario,	energ	y sour	ces an	d thei	r utiliz	ation,	Learn	about	energy	ý
	conv	ersion	meth	ods ar	nd thei	r analy	ysis								
CO2	Stud	y the p	princip	les of	renew	able e	energy	conve	rsion	systen	ıs.				
CO3	Unde	erstan	d the c	concep	ot of gi	reen e	nergy	and ze	ero en	ergy.					
	CO-PO-PSO Mapping														
COs						PC	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	2	-	-	-	-	-	-	-			
CO2	2	2	3	-	2	-	-	-	-	-	-	-			
CO3	2	2	3	-	2	-	-	-	-	-	-	-			
Average	2	2	3	-	2	-	-	-	-	-	-	-			

Subject: Fl	uid Po	wer Sy	/stems	5			Sul	bject	Code	: 17M	E72				
					(Cours	e Out	tcome	s						
CO1	То рі	rovide	an ins	ight in	ito the	capat	oilities	of hyd	draulic	and p	neum	atic flu	uid pov	ver.	
CO2	To ui	nderst	and co	oncept	s and	relatio	nship	s surrc	oundin	g forc	e, pres	ssure,	energy	and p	ower
	in flu	id pov	ver sys	stems.											
CO3	To ex	kamine	e conc	epts co	enterii	ng on s	Source	es of h	ydraul	ic pow	ver, ro	tary ar	nd line	ar to in fl	uid
	power systems. Exposure to build and interpret hydraulic and pneumatic circuits related to industrial														
CO4	Exposure to build and interpret hydraulic and pneumatic circuits related to industrial applications. To familiarize with logic controls and trouble shooting														
CO5	applications. To familiarize with logic controls and trouble shooting														
					CC)-PO-	PSO]	Mapp	ing						
COs						РС	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	3	3	-	-	-	1	-	-	1			
CO2	3	3	-	3	3	-	-	-	1	-	-	1			
CO3	3	3	-	3	3	-	-	-	1	-	-	1			
CO4	3	3	-	3	3	-	-	-	1	-	-	1			
CO5	3	3	-	3	3	-	-	-	1	-	-	1	100		-

Average	3	3	-	3	3	-	-	-	1	-	-	1			
---------	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--

Subject: Tr	ribolog	gy					Su	bject	Code	: 17M	E742					
					(Cours	e Ou	tcome	s							
CO1	To eo	ducate	the st	udent	s on t	he imp	oortan	ce of f	rictior	n, the r	elated	theoi	ries/la	ws of		
	slidir	ng and	rolling	g fricti	on and	d the e	ffect o	of visco	osity o	f lubri	cants.					
CO2	To ex	kpose	the stu	udents	to the	e cons	equen	ces of	wear,	wear	mecha	anisms	s, wear	r theor	ies	
	and a	analys	is of w	ear pr	oblem	ıs.										
CO3	To m	ake th	ne stuc	lents ι	unders	tand t	he pri	nciples	s of lul	oricati	on, lut	oricatio	on reg	imes,		
	theo	ries of	hydro	dynar	nic an	d the a	advano	ced lub	oricatio	on tecl	nnique	es				
CO4	To ex	cervisite expose the students to the factors influencing the selection of bearing materials for fferent sliding applications.														
	diffe	ifferent sliding applications.														
CO5	To in	ifferent sliding applications. o introduce the concepts of surface engineering and its importance in tribology.														
					CC	D-PO-	PSO	Mapp	ing							
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	-	-	-	-	-	-	-	2	-				
CO2	2	2	3	-	-	-	-	-	-	-	2	-				
CO3	2	2	3	-	-	-	-	-	-	-	2	-				
CO4	2	2	3	-	-	-	-	-	-	-	2	-				
CO5	2	2	3	-	-	-	-	-	-	-	2	-				
Average	2	2	3	-	-	-	-	-	-	-	2	-				

Subject: N	lechat	ronics					Sul	bject	Code	: 17M	E753				
					(Cours	e Out	tcome	s						
CO1	Unde	erstan	d the e	evoluti	on and	d deve	lopme	ent of	Mecha	atronio	cs as a	discip	line.		
CO2	Subs	tantia	te the	need f	for inte	erdisci	plinar	y stud	y in te	chnolo	ogy ed	ucatio	n.		
CO3	Unde funct	erstan tions c	d the a of each	elem	itions (ent	of mic	roproo	cessor	s in va	rious s	system	is and	to kno	w the	
CO4	Dem	onstra	te the	integ	ration	philos	ophy i	in view	v of M	echatr	onics	techno	ology		
	CO-PO-PSO Mapping														
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	2	3	-	-	-	-	-	-	1			
CO2	2	2	-	2	3	-	-	-	-	-	-	1			
CO3	2	2	-	2	3	-	-	-	-	-	-	1			
CO4	2	2	-	2	3	-	-	-	-	-	-	1			
Average	2	2	-	2	3	-	-	-	-	-	-	1			

Subject: C	ontrol Engineering	Subject Code: 17ME73
	Course Outcome	es
CO1	Modeling of mechanical, hydraulic, pneumatic a	and electrical systems
		Brincipal

CO2	Repr	esenta	ation c	of syste	em ele	ments	by blo	ocks a	nd its	reduct	ion					
CO3	Trans	sient a	and ste	eady st	ate re	spons	e anal	ysis of	a syst	em.						
CO4	Freq	uency	respo	nse an	alysis	using	polar p	olot.								
CO5	Freq	uency	respo	nse an	alysis	using	bode p	olot.								
CO6	Analy	ysis of	syster	n usin	g root	locus	plots.									
CO7	Diffe	rent s	ystem	comp	ensato	ors and	l varia	ble ch	aracte	ristics	of line	ear sys	tems.			
		CO-PO-PSO Mapping POs PSOs														
COs		POS PSOS														
	1	POs PSOs 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	-	2	-	2	3	-	-	-	2	-	-	2				
CO2	-	2	-	2	3	-	-	-	2	-	-	2				
CO3	-	2	-	2	3	-	-	-	2	-	-	2				
CO4	-	2	-	2	3	-	-	-	2	-	-	2				
CO5	-	2	-	2	3	-	-	-	2	-	-	2				
CO6	-	2	-	2	3	-	-	-	2	-	-	2				
CO7	-	2	-	2	3	-	-	-	2	-	-	2				
Average	-	2	-	2	3	-	-	-	2	-	-	2				

Subject: C	IM Lab)					Su	bject	Code	: 17M	EL77					
						Cours	se Ou	tcome	es							
CO1	Drav struc	v the g tures.	eome	tric mo	odels o	of sym	metrio	c, cam	bered	aero f	oil, no	zzle, w	ing ar	nd othe	er	
CO2	Appl	y diffe	rent ty	pes o	f mesł	ning.										
CO3	Perf	erform the flow and stress analysis.														
		CO-PO-PSO Mapping														
COs						P	Os							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	1	-	-	-	-	-	-	-	-				
CO2	2	2	3	1	-	-	-	-	-	-	-	-				
CO3	2	2	3	1	-	-	-	-	-	-	-	-				
Average	2	2	3	1	-	-	-	-	-	-	-	-				

Subject D	ESIGN LAB	Subject Code: 17MEL76								
	Course	Outcomes								
CO1	To understand the natural frequency damping.	In the second s second second se	ing ratio and							
CO2	To understand the balancing of rotating masses.									
CO3	To understand the concept of the cri	tical speed of a rotating shaft.								
CO4	To understand the concept of stress	concentration using Photo elast	ticity.							
CO5	To understand the equilibrium speed	d, sensitiveness, power and effo	rt of Governor.							
	CO-PO-P	PSO Mapping								
COs	РО	S	PSOST							

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	-			
CO2	2	2	3	1	-	-	-	-	-	-	-	-			
CO3	2	2	3	1	-	-	-	-	-	-	-	-			
CO4	2	2	3	1	-	-	-	-	-	-	-	-			
CO5	2	2	3	1	-	-	-	-	-	-	-	-			
Average	2	2	3	1	-	-	-	-	-	-	-	-			

Subject: P	roject	Work P	hase - 1	L			Su	bject	Code	: 17Ⅳ	1EP78				
					Co	urse	Outc	omes							
CO1	Iden	tify and	interpr	et the	e realist	ic me	chanio	cal eng	gineer	ing pr	oblem	s and	relate	d syste	ems.
CO2	Appl	y the ba	asic prir	nciple	s and co	oncept	ts of n	necha	nical e	engine	ering i	in real	world	syste	ms
	base	d on pr	ofessio	nal et	hics and	l resp	onsibi	ilities.							
CO3	Critic	cize and	l experi	ment	to achie	eve op	otimu	m solu	tions	for me	echani	cal en	gineer	ring	
	prob	lems.													
CO4	Anal	yze, eva	aluate a	nd re	view th	e obta	ined	solutio	on for	proble	ems in	mech	anical		
	engii	gineering systems.													
CO5	Dem	monstrate professionalism with ethics; present effective communication skills and													
	relat	Demonstrate professionalism with ethics; present effective communication skills and elate engineering issues to broader societal context.													
					CO-F	PO-PS	SO M	appin	g						
COs						POs								PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3				1	2	2	-	3	3	1	2			
CO2	3	1			2	1	-	1	3	3	1	3			
CO3	3	2	2	2	2	2	1		3	3	1	2			
CO4	3	2	2	2	2	2	1		3	3	1	2			
CO5						1		3	3	3		1			
Average	2.5	2.33	2.33	2	1.75	2	2	2.5	3	3	1.6	2.6			

Sı	ubject	t : Ope i	rations	Resea	rch		Sul	bject	Code	: 17MI	E81				
					(Cours	e Out	tcome	es						
CO1	To er organ	nable th	e stude with a	ents to quanti	underst itative	tand the basis of	e scien f decis	tific m ion ma	ethods king.	of prov	viding	various	depart	ments o	of an
CO2 To enable the studentsto understand the importance of various tools and techniques in finding optimal solutions to problems involving limited resources in the form of Men, Materials and machinery. CO-PO-PSO Mapping															
COs						PC)s	mapp						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
CO2	2	2	3	1	-	-	-	-	-	-	-	2			
Average	2	2	3	1	-	-	-	-	-	-	-	2			

Principal

Su	bject:	Additi	ve Ma	nufact	uring		Su	bject	Code	: 17M	E82					
					(Cours	e Ou	tcome	s							
CO1	Unde	erstanc	the a	dditive	e manı	ıfactur	ring pr	ocess,	polyn	nerizat	ion an	d pow	der me	etallurg	gy	
	proc	ess														
CO2	Unde	erstand	l chara	cteris	ation t	echniq	ues in	additi	ve ma	nufact	uring.					
CO3	Acqu	cquire knowledge on CNC and Automation.														
	CO-PO-PSO Mapping															
COs						PC	Ds							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	1	-	-	-	-	-	-	-	2				
CO2	2	2	3	1	-	-	-	-	-	-	-	2				
CO3	2	2	3	1	-	-	-	-	-	-	-	2				
Average	2	2	3	1	-	-	-	-	-	-	-	2				

Subjec	t: Inte	rnship	/ Profe	essiona	l Pract	ice	Su	bject	Code	: 17M	E84				
					(Cours	e Ou	tcome	es						
CO1	Conc	luct e	perim	ents t	o eval	uate tł	ne des	ign ch	aracte	ristics	of var	ious m	nachine	e elem	ents
	subje	ected 1	o vari	ous lo	ading.										
CO2	Anal	yse th	e theo	retical	and e	xperin	nenta	l conce	ept in I	machii	ne eler	nents	subjec	ted to	
	vario	ous loa	ding.												
CO3	Understand and discuss the design characteristics of various systems subjected to														
	mechanical loading.														
					CC	D-PO-	PSO	Mapp	ing						
COs						PC	Ds							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	I	-	-	-	-	2			
CO2	2	2	3	1	-	-	I	-	-	-	-	2			
CO3	2	2	3	1	-	-	_	-	-	-	-	2			
Average	2	2	3	1	-	-	-	-	-	-	-	2			

Subj	ect: Pro	oduct li	ife cycl	e mana	ageme	nt	Su	bject	Code	: 17M	E835				
						Cours	e Ou	tcome	es						
CO1	Fam	iliariz	e witl	1 vario	ous st	rategi	es of]	PLM							
CO2	Und	erstan	d the	conce	pt of	produ	ct des	sign aı	nd sin	nulatio	on.				
CO3	Dev	elop N	New p	roduc	t deve	elopm	ent ,p	roduc	t struc	ture a	nd su	pport	ing sy	stems	
CO4	Interpret the technology forecasting and product innovation and development in														
	business processes.														
CO5	Und	erstan	id pro	duct b	ouildir	ng and	Prod	luct C	onfigu	iration	1.				
					CC	D-PO-	PSO	Mapp	ing						
COs						PO	Os							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	-	-	-	-	-	-	-	2			
												C	to	pa	-X)

CO2	2	2	3	1	-	-	-	-	-	-	-	2		
CO3	2	2	3	1	-	-	-	-	-	-	-	2		
CO4	2	2	3	1	-	-	-	-	-	-	-	2		
CO5	2	2	3	1	-	-	-	-	-	-	-	2		
Average	2	2	3	1	-	-	-	-	-	-	-	2		

Subject: P	roject F	hase – I	1				Su	bject	Code	: 17N	1E85					
					Co	urse	Outc	omes								
CO1	Iden	tify and	interpr	et the	e realist	ic me	chanio	cal eng	gineer	ing pr	oblem	s and	relate	d syste	ems.	
CO2	Appl base	y the ba d on pr	asic prir ofessio	nciple: nal et	s and co hics and	oncep d resp	ts of n onsibi	necha lities.	nical e	engine	ering	in real	world	syste	ms	
CO3	Critio prob	cize and lems.	l experi	ment	to achie	eve op	otimu	m solu	tions	for me	echani	cal en	gineer	ring		
CO4	Anal ^ı engiı	nalyze, evaluate and review the obtained solution for problems in mechanical ngineering systems. emonstrate professionalism with ethics; present effective communication skills and														
CO5	Dem relat	ngineering systems. emonstrate professionalism with ethics; present effective communication skills and late engineering issues to broader societal context.														
					CO-F	PO-PS	SO M	appin	g							
COs						POs	5							PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3				1	2	2	-	3	3	1	2				
CO2	3	1			2	1	-	1	3	3	1	3				
CO3	3	2	2	2	2	2	1		3	3	1	2				
CO4	3	2	2	2	2	2	1		3	3	1	2				
CO5						1		3	3	3		1				
Average	2.5	2.33	2.33	2	1.75	2	2	2.5	3	3	1.6	2.6				

Subject: Seminar							Sul	Subject Code: 17MES86								
Course Outcomes																
CO1	Identify recent technical topics from interested domains															
CO2	Acquire basic skills for performing literature survey.															
CO3	Improve their Presentation and Communication skills.															
CO4	Develop skills for preparing technical report															
CO-PO-PSO Mapping																
COs	POs											PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	3	1	-	-	-	-	-	-	-	2				
CO2	2	2	3	1	-	-	-	-	-	-	-	2				
CO3	2	2	3	1	-	-	-	-	-	-	-	2				
CO4	2	2	3	1								1				

Average 2 2 3 1 - - - - 1	1.8
---	-----

Hopes